Sulphide capacity prediction of CaO-SiO2-MgO-Al2O3slag system by using regularized extreme learning machine

被引:16
作者
Xin, Zi-Cheng [1 ]
Zhang, Jiang-Shan [1 ]
Lin, Wen-Hui [1 ]
Zhang, Jun-Guo [2 ]
Jin, Yu [2 ]
Zheng, Jin [2 ]
Cui, Jia-Feng [2 ]
Liu, Qing [1 ]
机构
[1] Univ Sci & Technol Beijing USTB, State Key Lab Adv Met, Beijing 100083, Peoples R China
[2] Hebei Iron & Steel Co Ltd, Tangshan Branch, Tangshan, Hebei, Peoples R China
基金
中国国家自然科学基金;
关键词
Steelmaking; slagging; sulphide capacity; regularized extreme learning machine; !text type='Python']Python[!/text; desulphurization; statistical evaluation; intelligent algorithm; OPTICAL BASICITY; NEURAL-NETWORK; SLAGS; DESULFURIZATION; PHOSPHORUS; SULFUR; CAF2; MGO;
D O I
10.1080/03019233.2020.1771892
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
Desulphurization is essential in the steelmaking process for high-quality steel production, and sulphide capacity has proven to be an effective index to evaluate the desulphurization ability of molten slag or flux. Several analytical or empirical models have been proposed to calculate the sulphide capacity. However, these models usually show insufficient generalization ability when new variables/data are introduced, which limits their practical application. In this work, experimental data were collected from the literature and a regularized extreme learning machine (RELM) model was established to predict the sulphide capacity of the CaO-SiO2-MgO-Al(2)O(3)slag system. The results demonstrated that the proposed model is robust for the prediction of sulphide capacity under different conditions. The coefficient of determination (R-2), correlation coefficient (r), root-mean-square error (RMSE) of the optimal model reached 0.9763, 0.9881, 0.113, respectively, which outperform the results of the reported models.
引用
收藏
页码:275 / 283
页数:9
相关论文
共 50 条
[21]   Viscosity Property and Melt Structure of CaO-MgO-SiO2-Al2O3-FeO Slag System [J].
Shen, Xiang ;
Chen, Min ;
Wang, Nan ;
Wang, Dong .
ISIJ INTERNATIONAL, 2019, 59 (01) :9-15
[22]   Effect of Al2O3 on Viscosity and Structure of SiO2-FeO-Al2O3-Fe2O3-CaO-MgO Slag System [J].
Wang, Baoren ;
Yang, Hongying ;
Jin, Zhenan ;
Zheng, Tianhao ;
Chen, Guobao ;
Dong, Zhunqin .
JOM, 2023, 75 (04) :1221-1229
[23]   Effect of the Al2O3 Content and MgO/Al2O3 Ratio on the Viscosity and Structure of CaO-SiO2-MgO-Al2O3-Based Furnace Slag with CaO/SiO2=1.2 [J].
Song, Jianwei ;
He, Lei ;
Hu, Tu ;
Lv, Tingting ;
Gao, Li .
METALLURGICAL AND MATERIALS TRANSACTIONS B-PROCESS METALLURGY AND MATERIALS PROCESSING SCIENCE, 2024, 55 (05) :3798-3810
[24]   Sulfide Capacity of CaO-SiO2-FeO-Al2O3-MgOsatd. Slag [J].
Park, Youngjoo ;
Min, Dong Joon .
ISIJ INTERNATIONAL, 2016, 56 (04) :520-526
[25]   Sulphide Capacities of CaO-Al2O3-SiO2-MgO-MnO Slags in the Temperature Range 1673-1773 K [J].
Taniguchi, Yoshinori ;
Sano, Nobuo ;
Seetharaman, Seshadri .
ISIJ INTERNATIONAL, 2009, 49 (02) :156-163
[26]   Reaction kinetics of desulphurisation of hot metal using CaO-SiO2-Al2O3-MgO-TiO2-Na2O slag systems [J].
Li, Minghui ;
Peng, Jiayun ;
Li, Saisai ;
Chen, Ruoyu ;
Li, Canhua ;
Bao, Guangda ;
Lv, Siwei .
IRONMAKING & STEELMAKING, 2025,
[27]   Effects of basicity and MgO content on the viscosity of the SiO2-CaO-MgO-9wt%Al2O3 slag system [J].
Yun-ming Gao ;
Shao-bo Wang ;
Chuan Hong ;
Xiu-juan Ma ;
Fu Yang .
International Journal of Minerals, Metallurgy, and Materials, 2014, 21 :353-362
[28]   Effects of basicity and MgO content on the viscosity of the SiO2-CaO-MgO-9wt%Al2O3 slag system [J].
Gao, Yun-ming ;
Wang, Shao-bo ;
Hong, Chuan ;
Ma, Xiu-juan ;
Yang, Fu .
INTERNATIONAL JOURNAL OF MINERALS METALLURGY AND MATERIALS, 2014, 21 (04) :353-362
[29]   Desulfurization of CaO-Al2O3-SiO2-TiO2 Slag System [J].
Dong, Kai ;
Wu, Long ;
Liu, Wen-juan ;
Zhu, Rong .
ISIJ INTERNATIONAL, 2014, 54 (10) :2248-2254
[30]   Effect of Composition on Desulfurization Capacity in the CaO-SiO2-Al2O3-MgO-CaF2-BaO System [J].
Yanhong Gao ;
Qingcai Liu ;
Lingtao Bian .
Metallurgical and Materials Transactions B, 2012, 43 :229-232