Sulphide capacity prediction of CaO-SiO2-MgO-Al2O3slag system by using regularized extreme learning machine

被引:16
|
作者
Xin, Zi-Cheng [1 ]
Zhang, Jiang-Shan [1 ]
Lin, Wen-Hui [1 ]
Zhang, Jun-Guo [2 ]
Jin, Yu [2 ]
Zheng, Jin [2 ]
Cui, Jia-Feng [2 ]
Liu, Qing [1 ]
机构
[1] Univ Sci & Technol Beijing USTB, State Key Lab Adv Met, Beijing 100083, Peoples R China
[2] Hebei Iron & Steel Co Ltd, Tangshan Branch, Tangshan, Hebei, Peoples R China
基金
中国国家自然科学基金;
关键词
Steelmaking; slagging; sulphide capacity; regularized extreme learning machine; !text type='Python']Python[!/text; desulphurization; statistical evaluation; intelligent algorithm; OPTICAL BASICITY; NEURAL-NETWORK; SLAGS; DESULFURIZATION; PHOSPHORUS; SULFUR; CAF2; MGO;
D O I
10.1080/03019233.2020.1771892
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
Desulphurization is essential in the steelmaking process for high-quality steel production, and sulphide capacity has proven to be an effective index to evaluate the desulphurization ability of molten slag or flux. Several analytical or empirical models have been proposed to calculate the sulphide capacity. However, these models usually show insufficient generalization ability when new variables/data are introduced, which limits their practical application. In this work, experimental data were collected from the literature and a regularized extreme learning machine (RELM) model was established to predict the sulphide capacity of the CaO-SiO2-MgO-Al(2)O(3)slag system. The results demonstrated that the proposed model is robust for the prediction of sulphide capacity under different conditions. The coefficient of determination (R-2), correlation coefficient (r), root-mean-square error (RMSE) of the optimal model reached 0.9763, 0.9881, 0.113, respectively, which outperform the results of the reported models.
引用
收藏
页码:275 / 283
页数:9
相关论文
共 50 条
  • [1] Sulphide Capacity of CaO-SiO2-Al2O3MgO System Relevant to Low MgO Blast Furnace Slags
    Ma, Xiaodong
    Chen, Mao
    Xu, Haifa
    Zhu, Jinming
    Wang, Geoff
    Zhao, Baojun
    ISIJ INTERNATIONAL, 2016, 56 (12) : 2126 - 2131
  • [2] Sulfide Capacities in the Al2O3-CaO-MgO-SiO2 System
    Condo, Adolfo Firmino Timoteo
    Shu Qifeng
    Du Sichen
    STEEL RESEARCH INTERNATIONAL, 2018, 89 (08)
  • [3] Development of an Artificial Neural Network to Predict Sulphide Capacities of CaO-SiO2-Al2O3-MgO Slag System
    Ma, Alvin
    Mostaghel, Sina
    Chattopadhyay, Kinnor
    ISIJ INTERNATIONAL, 2017, 57 (01) : 114 - 122
  • [4] Relationship between the common optical basicity models and the sulphide capacities of CaO-Al2O3-SiO2-MgO slag
    Slovic, Z.
    Nedeljkovic, Lj
    Raic, K.
    Odanovic, Z.
    KOVOVE MATERIALY-METALLIC MATERIALS, 2012, 50 (03): : 185 - 192
  • [5] Sulphide capacity of CaO-SiO2-Al2O3-MgO-TiO2-FetO slag with high titanium and high FeO content based on HIsmelt process
    Gao, Yanjia
    Liu, Ran
    Lan, Chenchen
    Chen, Shujun
    Wang, Yan
    Yan, Guangshi
    Lyu, Qing
    IRONMAKING & STEELMAKING, 2023, 50 (08) : 991 - 998
  • [7] Study on sulphide capacity of CaO-SiO2-Al2O3-MgO-FetO slags
    Wang, Chengli
    Lu, Qing
    Zhang, Shuhui
    Li, Fumin
    JOURNAL OF UNIVERSITY OF SCIENCE AND TECHNOLOGY BEIJING, 2006, 13 (03): : 213 - 217
  • [8] A Sulphide Capacity Prediction Model of CaO-SiO2-MgO-Al2O3 Ironmaking Slags Based on the Ion and Molecule Coexistence Theory
    Shi, Cheng-bin
    Yang, Xue-min
    Jiao, Jin-sha
    Li, Chuang
    Guo, Han-jie
    ISIJ INTERNATIONAL, 2010, 50 (10) : 1362 - 1372
  • [9] Sulphide capacities of CaO-SiO2-Al2O3-MgO slags
    Hayakawa, H
    Hasegawa, M
    Oh-nuki, K
    Sawai, T
    Iwase, M
    STEEL RESEARCH INTERNATIONAL, 2006, 77 (01) : 14 - 20
  • [10] Sulphide Capacity and Mineralogy of BaO and B2O3 Modified CaO-Al2O3 Top Slag
    Yan, Pengcheng
    Nie, Pinxu
    Huang, Shuigen
    Blanpain, Bart
    Guo, Muxing
    ISIJ INTERNATIONAL, 2014, 54 (07) : 1570 - 1577