Mappings of Finite Distortion: Decay of the Jacobian

被引:6
作者
Koskela, Pekka [1 ]
Onninen, Jani [1 ]
Rajala, Kai [1 ]
机构
[1] Univ Jyvaskyla, Dept Math & Stat, Jyvaskyla 40014, Finland
基金
芬兰科学院; 美国国家科学基金会;
关键词
Mappings of finite distortion; Jacobian; REGULARITY; INVERSE;
D O I
10.1007/s12220-011-9224-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish the sharp degree of integrability for the reciprocal of the Jacobian determinant of an open and discrete mapping with finite, p-integrable distortion.
引用
收藏
页码:964 / 976
页数:13
相关论文
共 50 条
[31]   Openness and Discreteness of Mappings of Finite Distortion on Carnot Groups [J].
Basalaev, S. G. ;
Vodopyanov, S. K. .
SIBERIAN MATHEMATICAL JOURNAL, 2023, 64 (06) :1289-1296
[32]   Topological obstructions to continuity of Orlicz–Sobolev mappings of finite distortion [J].
Paweł Goldstein ;
Piotr Hajłasz .
Annali di Matematica Pura ed Applicata (1923 -), 2019, 198 :243-262
[33]   Topological obstructions to continuity of Orlicz-Sobolev mappings of finite distortion [J].
Goldstein, Pawel ;
Hajlasz, Piotr .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2019, 198 (01) :243-262
[34]   PLANAR HARMONIC MAPPINGS WITH A GIVEN JACOBIAN [J].
Graf, S. Yu. ;
Nikitin, I. A. .
PROBLEMY ANALIZA-ISSUES OF ANALYSIS, 2023, 12 (03) :69-85
[35]   GENERALIZED DIMENSION DISTORTION UNDER MAPPINGS OF SUB-EXPONENTIALLY INTEGRABLE DISTORTION [J].
Rajala, Tapio ;
Zapadinskaya, Aleksandra ;
Zurcher, Thomas .
ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2011, 36 (02) :553-566
[36]   PLANAR MAPPINGS OF SUBEXPONENTIALLY INTEGRABLE DISTORTION: INTEGRABILITY OF DISTORTION INVERSES [J].
Xu, Haiqing .
ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2017, 42 (01) :429-437
[37]   Modulus inequalities for mappings with weighted bounded (p, q)-distortion [J].
Tryamkin, M. V. .
SIBERIAN MATHEMATICAL JOURNAL, 2015, 56 (06) :1114-1132
[38]   MAPPINGS OF BOUNDED MEAN DISTORTION AND COHOMOLOGY [J].
Pankka, Pekka .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2010, 20 (01) :229-242
[39]   Mappings of Bounded Mean Distortion and Cohomology [J].
Pekka Pankka .
Geometric and Functional Analysis, 2010, 20 :229-242
[40]   Mappings of Finite Codistortion and Sobolev Classes of Functions [J].
Vodopyanov, S. K. .
DOKLADY MATHEMATICS, 2011, 84 (02) :640-644