Dual solutions in a double-diffusive convection near stagnation point region over a stretching vertical surface

被引:17
作者
Subhashini, S. V. [2 ]
Sumathi, R. [2 ]
Pop, I. [1 ]
机构
[1] Univ Cluj, Fac Math, R-3400 Cluj Napoca, Romania
[2] Anna Univ, Dept Math, Madras 600025, Tamil Nadu, India
关键词
Dual solutions; Double-diffusive convection; Stretching vertical surface; BOUNDARY-LAYER-FLOW; MIXED-CONVECTION; SHRINKING SHEET; POROUS-MEDIUM; SIMILARITY SOLUTIONS; FLUID; ADJACENT; PLATE;
D O I
10.1016/j.ijheatmasstransfer.2012.01.008
中图分类号
O414.1 [热力学];
学科分类号
摘要
The development of double-diffusive convection near stagnation point region over a stretching vertical surface with constant wall temperature has been investigated. The external flow and the stretching velocities are assumed to vary with root x, where x is the distance from the slot where the stretching surface is issued. Using the local similarity method, it has been shown that a set of suitable similarity transformations reduces the non-linear coupled partial differential equations governing the flow, thermal and concentration fields into a set of non-linear coupled ordinary differential equations. The non-linear self-similar equations along with the boundary conditions form a two point boundary value problem and are solved using Shooting method, by converting into an initial value problem. In this method, the system of equations is converted into the set of first order system which is solved by fourth-order Runge-Kutta method. Flows with both assisting and opposing buoyancy forces are considered in the present investigation. The study reveals that the dual solutions of velocity, temperature and concentration exist for certain values of suction/injection and buoyancy parameters. Prandtl and Schmidt numbers strongly affect the thermal and concentration boundary layer thicknesses, respectively. The effects of various parameters on the velocity, temperature and concentration profiles are also presented here. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2524 / 2530
页数:7
相关论文
共 25 条
[11]   Heat and mass transfer analysis for boundary layer stagnation-point flow towards a heated porous stretching sheet with heat absorption/generation and suction/blowing [J].
Layek, G. C. ;
Mukhopadhyay, S. ;
Samad, Sk. A. .
INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2007, 34 (03) :347-356
[12]   Steady mixed convection flow of a micropolar fluid near the stagnation point on a vertical surface [J].
Lok, YY ;
Amin, N ;
Campean, D ;
Pop, I .
INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2005, 15 (07) :654-670
[13]  
Mahapatra TR, 2002, HEAT MASS TRANSFER, V38, P517, DOI 10.1007/S002310100215
[14]   MIXED CONVECTION BOUNDARY-LAYER SIMILARITY SOLUTIONS - PRESCRIBED WALL HEAT-FLUX [J].
MERKIN, JH ;
MAHMOOD, T .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1989, 40 (01) :51-68
[15]   Final steady flow near a stagnation point on a vertical surface in a porous medium [J].
Merrill, Keith ;
Beauchesne, Matthew ;
Previte, Joseph ;
Paullet, Joseph ;
Weidman, Patrick .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2006, 49 (23-24) :4681-4686
[16]   MHD flow of a viscous fluid on a nonlinear porous shrinking sheet with homotopy analysis method [J].
Nadeem, S. ;
Hussain, Anwar .
APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2009, 30 (12) :1569-1578
[17]   HAM solutions for boundary layer flow in the region of the stagnation point towards a stretching sheet [J].
Nadeem, S. ;
Hussain, Anwar ;
Khan, Majid .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2010, 15 (03) :475-481
[18]   Series solutions for the stagnation flow of a second-grade fluid over a shrinking sheet [J].
Nadeem, S. ;
Hussain, Anwar ;
Malik, M. Y. ;
Hayat, T. .
APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2009, 30 (10) :1255-1262
[19]   Stagnation Flow of a Jeffrey Fluid over a Shrinking Sheet [J].
Nadeem, Sohail ;
Hussain, Anwar ;
Khan, Majid .
ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2010, 65 (6-7) :540-548
[20]   Thermal Radiation Effects on the Flow by an Exponentially Stretching Surface: a Series Solution [J].
Nadeem, Sohail ;
Hayat, Tasawar ;
Malik, Muhammad Yousaf ;
Rajput, Saeed Ahmed .
ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2010, 65 (6-7) :495-503