Current Status of Metabolomic Biomarker Discovery: Impact of Study Design and Demographic Characteristics

被引:70
作者
Tolstikov, Vladimir [1 ]
Moser, A. James [2 ,3 ]
Sarangarajan, Rangaprasad [1 ]
Narain, Niven R. [1 ]
Kiebish, Michael A. [1 ]
机构
[1] BERG, Precis Med Div, Framingham, MA 01701 USA
[2] Beth Israel Deaconess Med Ctr, Boston, MA 02215 USA
[3] Harvard Med Sch, Boston, MA 02215 USA
关键词
metabolomics; biomarker; demographics; clinical; phenotype; discovery; REVEALS;
D O I
10.3390/metabo10060224
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Widespread application of omic technologies is evolving our understanding of population health and holds promise in providing precise guidance for selection of therapeutic interventions based on patient biology. The opportunity to use hundreds of analytes for diagnostic assessment of human health compared to the current use of 10-20 analytes will provide greater accuracy in deconstructing the complexity of human biology in disease states. Conventional biochemical measurements like cholesterol, creatinine, and urea nitrogen are currently used to assess health status; however, metabolomics captures a comprehensive set of analytes characterizing the human phenotype and its complex metabolic processes in real-time. Unlike conventional clinical analytes, metabolomic profiles are dramatically influenced by demographic and environmental factors that affect the range of normal values and increase the risk of false biomarker discovery. This review addresses the challenges and opportunities created by the evolving field of clinical metabolomics and highlights features of study design and bioinformatics necessary to maximize the utility of metabolomics data across demographic groups.
引用
收藏
页数:12
相关论文
共 52 条
[1]   Metabolomic and molecular insights into sickle cell disease and innovative therapies [J].
Adebiyi, Morayo G. ;
Manalo, Jeanne M. ;
Xia, Yang .
BLOOD ADVANCES, 2019, 3 (08) :1347-1355
[2]   Targeted Clinical Metabolite Profiling Platform for the Stratification of Diabetic Patients [J].
Ahonen, Linda ;
Jantti, Sirkku ;
Suvitaival, Tommi ;
Theilade, Simone ;
Risz, Claudia ;
Kostiainen, Risto ;
Rossing, Peter ;
Oresic, Matej ;
Hyotylainen, Tuulia .
METABOLITES, 2019, 9 (09)
[3]   Population-Level Analysis to Determine Parameters That Drive Variation in the Plasma Metabolite Profiles [J].
Al-Majdoub, Mahmoud ;
Herzog, Katharina ;
Daka, Bledar ;
Magnusson, Martin ;
Rastam, Lennart ;
Lindblad, Ulf ;
Spegel, Peter .
METABOLITES, 2018, 8 (04)
[4]   Characterization of triple-negative breast cancer preclinical models provides functional evidence of metastatic progression [J].
Arroyo-Crespo, Juan J. ;
Armifian, Ana ;
Charbonnier, David ;
Deladriere, Coralie ;
Palomino-Schatzlein, Martina ;
Lamas-Domingo, Ruben ;
Forteza, Jeronimo ;
Pinedalucena, Antonio ;
Vicent, Maria J. .
INTERNATIONAL JOURNAL OF CANCER, 2019, 145 (08) :2267-2281
[5]   A Comprehensive Plasma Metabolomics Dataset for a Cohort of Mouse Knockouts within the International Mouse Phenotyping Consortium [J].
Barupal, Dinesh K. ;
Zhang, Ying ;
Shen, Tong ;
Fan, Sili ;
Roberts, Bryan S. ;
Fitzgerald, Patrick ;
Wancewicz, Benjamin ;
Valdiviez, Luis ;
Wohlgemuth, Gert ;
Byram, Gregory ;
Choy, Ying Yng ;
Haffner, Bennett ;
Showalter, Megan R. ;
Vaniya, Arpana ;
Bloszies, Clayton S. ;
Folz, Jacob S. ;
Kind, Tobias ;
Flenniken, Ann M. ;
McKerlie, Colin ;
Nutter, Lauryl M. J. ;
Lloyd, Kent C. ;
Fiehn, Oliver .
METABOLITES, 2019, 9 (05)
[6]   Current Concepts in Pharmacometabolomics, Biomarker Discovery, and Precision Medicine [J].
Beger, Richard D. ;
Schmidt, Michael A. ;
Kaddurah-Daouk, Rima .
METABOLITES, 2020, 10 (04)
[7]   A Multi-omits Approach to Unraveling the Microbiome-Mediated Effects of Arabinoxylan Oligosaccharides in Overweight Humans [J].
Benitez-Paez, Alfonso ;
Kjlbaek, Louise ;
Gomez del Pulgar, Eva M. ;
Brahe, Lena K. ;
Astrup, Arne ;
Matysik, Silke ;
Schoett, Hans-Frieder ;
Krautbauer, Sabrina ;
Liebisch, Gerhard ;
Boberska, Joanna ;
Claus, Sandrine ;
Rampelli, Simone ;
Brigidi, Patrizia ;
Larsen, Lesli H. ;
Sanz, Yolanda .
MSYSTEMS, 2019, 4 (04)
[8]   Power Analysis and Sample Size Determination in Metabolic Phenotyping [J].
Blaise, Benjamin J. ;
Correia, Goncalo ;
Tin, Adrienne ;
Young, J. Hunter ;
Vergnaud, Anne-Claire ;
Lewis, Matthew ;
Pearce, Jake T. M. ;
Elliott, Paul ;
Nicholson, Jeremy K. ;
Holmes, Elaine ;
Ebbels, Timothy M. D. .
ANALYTICAL CHEMISTRY, 2016, 88 (10) :5179-5188
[9]   Microbiome-metabolome reveals the contribution of gut-kidney axis on kidney disease [J].
Chen, Yuan-Yuan ;
Chen, Dan-Qian ;
Chen, Lin ;
Liu, Jing-Ru ;
Vaziri, Nosratola D. ;
Guo, Yan ;
Zhao, Ying-Yong .
JOURNAL OF TRANSLATIONAL MEDICINE, 2019, 17 (1)
[10]   A Data Integration Multi-Omics Approach to Study Calorie Restriction-Induced Changes in Insulin Sensitivity [J].
Dao, Maria Carlota ;
Sokolovska, Nataliya ;
Brazeilles, Remi ;
Affeldt, Severine ;
Pelloux, Veronique ;
Prifti, Edi ;
Chilloux, Julien ;
Verger, Eric O. ;
Kayser, Brandon D. ;
Aron-Wisnewsky, Judith ;
Ichou, Farid ;
Pujos-Guillot, Estelle ;
Hoyles, Lesley ;
Juste, Catherine ;
Dore, Joel ;
Dumas, Marc-Emmanuel ;
Rizkalla, Salwa W. ;
Holmes, Bridget A. ;
Zucker, Jean-Daniel ;
Clement, Karine .
FRONTIERS IN PHYSIOLOGY, 2019, 9