Piezotronic Transistor Based on Topological Insulators

被引:61
作者
Hu, Gongwei [1 ]
Zhang, Yan [1 ,2 ]
Li, Lijie [3 ]
Wang, Zhong Lin [2 ,4 ]
机构
[1] Univ Elect Sci & Technol China, Sch Phys Elect, Sch Phys, Chengdu 610054, Sichuan, Peoples R China
[2] Chinese Acad Sci, Beijing Inst Nanoenergy & Nanosyst, Natl Ctr Nanosci & Technol NCNST, Beijing 100083, Peoples R China
[3] Swansea Univ, Coll Engn, Multidisciplinary Nanotechnol Ctr, Swansea SA1 8EN, W Glam, Wales
[4] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA
基金
“创新英国”项目; 英国工程与自然科学研究理事会;
关键词
piezotronics; topological insulator; quantum state; piezotronic switch; piezotronic logical unit; PIEZO-PHOTOTRONICS; STRAIN; LOGIC; PIEZOELECTRICITY; LUMINESCENCE; TRANSITION; PRESSURE; DEVICES; MOS2;
D O I
10.1021/acsnano.7b07996
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Piezotronics and piezophototronics are emerging fields by coupling piezoelectric, semiconductor, and photon excitation effects for achieving high-performance strain-gated sensors, LEDs, and solar cells. The built-in piezoelectric potential effectively controls carrier transport characteristics in piezoelectric semiconductor materials, such as ZnO, GaN, InN, CdS, and monolayer MoS2. In this paper, a topological insulator piezotronic transistor is investigated theoretically based on a HgTe/CdTe quantum well. The conductance, ON/OFF ratio, and density of states have been studied at various strains for the topological insulator piezotronic transistor. The ON/OFF ratio of conductance can reach up to 1010 with applied strain. The properties of the topological insulator are modulated by piezoelectric potential; which is the result of the piezotronic effect on quantum states. The principle provides a method for developing high-performance piezotronic devices based on a topological insulator.
引用
收藏
页码:779 / 785
页数:7
相关论文
共 48 条
[21]  
Maugin G.A., 1998, CONTINUUM MECH ELECT
[22]   Polarization-Driven Topological Insulator Transition in a GaN/InN/GaN Quantum Well [J].
Miao, M. S. ;
Yan, Q. ;
Van de Walle, C. G. ;
Lou, W. K. ;
Li, L. L. ;
Chang, K. .
PHYSICAL REVIEW LETTERS, 2012, 109 (18)
[23]   Dissipationless quantum spin current at room temperature [J].
Murakami, S ;
Nagaosa, N ;
Zhang, SC .
SCIENCE, 2003, 301 (5638) :1348-1351
[24]  
Pan CF, 2013, NAT PHOTONICS, V7, P752, DOI [10.1038/NPHOTON.2013.191, 10.1038/nphoton.2013.191]
[25]   Topological insulators and superconductors [J].
Qi, Xiao-Liang ;
Zhang, Shou-Cheng .
REVIEWS OF MODERN PHYSICS, 2011, 83 (04)
[26]   Quantum spin Hall effect in two-dimensional transition metal dichalcogenides [J].
Qian, Xiaofeng ;
Liu, Junwei ;
Fu, Liang ;
Li, Ju .
SCIENCE, 2014, 346 (6215) :1344-1347
[27]  
Qin Y, 2008, NATURE, V451, P809, DOI [10.1038/nature06601, 10.1038/nature066O1]
[28]   QUANTIZED CONDUCTANCE OF POINT CONTACTS IN A TWO-DIMENSIONAL ELECTRON-GAS [J].
VANWEES, BJ ;
VANHOUTEN, H ;
BEENAKKER, CWJ ;
WILLIAMSON, JG ;
KOUWENHOVEN, LP ;
VANDERMAREL, D ;
FOXON, CT .
PHYSICAL REVIEW LETTERS, 1988, 60 (09) :848-850
[29]   Direct-current nanogenerator driven by ultrasonic waves [J].
Wang, Xudong ;
Song, Jinhui ;
Liu, Jin ;
Wang, Zhong Lin .
SCIENCE, 2007, 316 (5821) :102-105
[30]   Piezoelectric field effect transistor and nanoforce sensor based on a single ZnO nanowire [J].
Wang, Xudong ;
Zhou, Jun ;
Song, Jinhui ;
Liu, Jin ;
Xu, Ningsheng ;
Wang, Zhong L. .
NANO LETTERS, 2006, 6 (12) :2768-2772