Synchronization of clocks through 12 km of strongly turbulent air over a city

被引:72
作者
Sinclair, Laura C. [1 ]
Swann, William C. [1 ]
Bergeron, Hugo [1 ,2 ]
Baumann, Esther [1 ]
Cermak, Michael [1 ]
Coddington, Ian [1 ]
Deschenes, Jean-Daniel [2 ]
Giorgetta, Fabrizio R. [1 ]
Juarez, Juan C. [3 ]
Khader, Isaac [1 ]
Petrillo, Keith G. [3 ]
Souza, Katherine T. [3 ]
Dennis, Michael L. [3 ]
Newbury, Nathan R. [1 ]
机构
[1] NIST, 325 Broadway, Boulder, CO 80305 USA
[2] Univ Laval, 2325 Rue Univ, Quebec City, PQ G1V 0A6, Canada
[3] Johns Hopkins Appl Phys Lab, 11100 Johns Hopkins Rd, Laurel, MD 20723 USA
关键词
DARK-MATTER; TESTS; TIME;
D O I
10.1063/1.4963130
中图分类号
O59 [应用物理学];
学科分类号
摘要
We demonstrate real-time, femtosecond-level clock synchronization across a low-lying, strongly turbulent, 12-km horizontal air path by optical two-way time transfer. For this long horizontal free-space path, the integrated turbulence extends well into the strong turbulence regime corresponding to multiple scattering with a Rytov variance up to 7 and with the number of signal interruptions exceeding 100 per second. Nevertheless, optical two-way time transfer is used to synchronize a remote clock to a master clock with femtosecond-level agreement and with a relative time deviation dropping as low as a few hundred attoseconds. Synchronization is shown for a remote clock based on either an optical or microwave oscillator and using either tip-tilt or adaptive-optics free-space optical terminals. The performance is unaltered from optical two-way time transfer in weak turbulence across short links. These results confirm that the two-way reciprocity of the free-space time-of-flight is maintained both under strong turbulence and with the use of adaptive optics. The demonstrated robustness of optical two-way time transfer against strong turbulence and its compatibility with adaptive optics is encouraging for future femtosecond clock synchronization over very long distance ground-to-air free-space paths.
引用
收藏
页数:4
相关论文
共 21 条
  • [1] Quantum tests of the Einstein Equivalence Principle with the STE-QUEST space mission
    Altschul, Brett
    Bailey, Quentin G.
    Blanchet, Luc
    Bongs, Kai
    Bouyer, Philippe
    Cacciapuoti, Luigi
    Capozziello, Salvatore
    Gaaloul, Naceur
    Giulini, Domenico
    Hartwig, Jonas
    Iess, Luciano
    Jetzer, Philippe
    Landragin, Arnaud
    Rasel, Ernst
    Reynaud, Serge
    Schiller, Stephan
    Schubert, Christian
    Sorrentino, Fiodor
    Sterr, Uwe
    Tasson, Jay D.
    Tino, Guglielmo M.
    Tuckey, Philip
    Wolf, Peter
    [J]. ADVANCES IN SPACE RESEARCH, 2015, 55 (01) : 501 - 524
  • [2] Andrews L. C., 2005, SPIE, V2nd, DOI DOI 10.1117/3.626196
  • [3] [Anonymous], 2005, Z13662005 ANSI LAS I
  • [4] Tight real-time synchronization of a microwave clock to an optical clock across a turbulent air path
    Bergeron, Hugo
    Sinclair, Laura C.
    Swann, William C.
    Nelson, Craig W.
    Deschenes, Jean-Daniel
    Baumann, Esther
    Giorgetta, Fabrizio R.
    Coddington, Ian
    Newbury, Nathan R.
    [J]. OPTICA, 2016, 3 (04): : 441 - 447
  • [5] Optical Clocks and Relativity
    Chou, C. W.
    Hume, D. B.
    Rosenband, T.
    Wineland, D. J.
    [J]. SCIENCE, 2010, 329 (5999) : 1630 - 1633
  • [6] Precision timing control for radioastronomy - Maintaining femtosecond synchronization in the atacama large millimeter array
    Cliche, JF
    Shillue, B
    [J]. IEEE CONTROL SYSTEMS MAGAZINE, 2006, 26 (01): : 19 - 26
  • [7] Delva P, 2013, ACTA FUTURA, V7, P67, DOI 10.2420/AF07.2013.67
  • [8] Hunting for topological dark matter with atomic clocks
    Derevianko, A.
    Pospelov, M.
    [J]. NATURE PHYSICS, 2014, 10 (12) : 933 - 936
  • [9] Synchronization of Distant Optical Clocks at the Femtosecond Level
    Deschenes, Jean-Daniel
    Sinclair, Laura C.
    Giorgetta, Fabrizio R.
    Swann, William C.
    Baumann, Esther
    Bergeron, Hugo
    Cermak, Michael
    Coddington, Ian
    Newbury, Nathan R.
    [J]. PHYSICAL REVIEW X, 2016, 6 (02):
  • [10] Giorgetta FR, 2013, NAT PHOTONICS, V7, P435, DOI [10.1038/nphoton.2013.69, 10.1038/NPHOTON.2013.69]