Turing-Hopf bifurcation analysis of a predator-prey model with herd behavior and cross-diffusion

被引:75
作者
Tang, Xiaosong [1 ,2 ]
Song, Yongli [1 ]
Zhang, Tonghua [3 ]
机构
[1] Tongji Univ, Dept Math, Shanghai 200092, Peoples R China
[2] Jinggangshan Univ, Coll Math & Phys, Jian 343009, Jiangxi, Peoples R China
[3] Swinburne Univ Technol, Dept Math, Hawthorn, Vic 3122, Australia
基金
中国国家自然科学基金;
关键词
Predator-prey model; Herd behavior; Cross-diffusion; Turing-Hopf bifurcation; Spatially inhomogeneous periodic solution; PATTERN-FORMATION; SPATIOTEMPORAL DYNAMICS; SPATIAL-PATTERNS; INSTABILITY; STABILITY; SYSTEM; SPACE;
D O I
10.1007/s11071-016-2873-3
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In this paper, we consider a predator-prey model with herd behavior and cross-diffusion subject to homogeneous Neumann boundary condition. Firstly, the existence and priori bound of a solution for the model without cross-diffusion are shown. Then, by computing and analyzing the normal form on the center manifold associated with the Turing-Hopf bifurcation, we find a wealth of spatiotemporal dynamics near the Turing-Hopf bifurcation point under suitable conditions. Furthermore, some numerical simulations to illustrate the theoretical analysis are carried out.
引用
收藏
页码:73 / 89
页数:17
相关论文
共 61 条
[1]   Modeling herd behavior in population systems [J].
Ajraldi, Valerio ;
Pittavino, Marta ;
Venturino, Ezio .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2011, 12 (04) :2319-2338
[2]   A MATHEMATICAL MODEL FOR CONTINUOUS CULTURE OF MICROORGANISMS UTILIZING INHIBITORY SUBSTRATES [J].
ANDREWS, JF .
BIOTECHNOLOGY AND BIOENGINEERING, 1968, 10 (06) :707-+
[3]   Instabilities in spatially extended predator-prey systems: Spatio-temporal patterns in the neighborhood of Turing-Hopf bifurcations [J].
Baurmann, Martin ;
Gross, Thilo ;
Feudel, Ulrike .
JOURNAL OF THEORETICAL BIOLOGY, 2007, 245 (02) :220-229
[4]   Cross-diffusion in the two-variable Oregonator model [J].
Berenstein, Igal ;
Beta, Carsten .
CHAOS, 2013, 23 (03)
[5]   Predator-prey dynamics with square root functional responses [J].
Braza, Peter A. .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2012, 13 (04) :1837-1843
[6]   Pattern Formation, Long-Term Transients, and the Turing-Hopf Bifurcation in a Space- and Time-Discrete Predator-Prey System [J].
Diaz Rodrigues, Luiz Alberto ;
Mistro, Diomar Cristina ;
Petrovskii, Sergei .
BULLETIN OF MATHEMATICAL BIOLOGY, 2011, 73 (08) :1812-1840
[7]   Turing instabilities in reaction-diffusion systems with cross diffusion [J].
Fanelli, Duccio ;
Cianci, Claudia ;
Di Patti, Francesca .
EUROPEAN PHYSICAL JOURNAL B, 2013, 86 (04)
[8]  
FREEDMAN HI, 1986, B MATH BIOL, V48, P493, DOI 10.1016/S0092-8240(86)90004-2
[9]   Turing Instability and Pattern Formation for the Lengyel-Epstein System with Nonlinear Diffusion [J].
Gambino, G. ;
Lombardo, M. C. ;
Sammartino, M. .
ACTA APPLICANDAE MATHEMATICAE, 2014, 132 (01) :283-294
[10]   Turing pattern formation in the Brusselator system with nonlinear diffusion [J].
Gambino, G. ;
Lombardo, M. C. ;
Sammartino, M. ;
Sciacca, V. .
PHYSICAL REVIEW E, 2013, 88 (04)