Integrable lattice realizations of conformal twisted boundary conditions

被引:25
作者
Chui, CHO [1 ]
Mercat, C [1 ]
Orrick, WP [1 ]
Pearce, PA [1 ]
机构
[1] Univ Melbourne, Dept Math & Stat, Parkville, Vic 3010, Australia
基金
澳大利亚研究理事会;
关键词
D O I
10.1016/S0370-2693(01)00982-0
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We construct integrable lattice realizations of conformal twisted boundary conditions for (sl) over cap (2) unitary minimal models on a torus. These conformal field theories are realized as the continuum scaling limit of critical A-D-E lattice models with positive spectral parameter. The integrable seam boundary conditions are labelled by (r, s,zeta) is an element of (A(g-2), A(g-1), Gamma) where Gamma is the group of automorphisms of the graph G and g is the Coxeter number of G = A, D, E. Taking symmetries into account, these are identified with conformal twisted boundary conditions of Petkova and Zuber labelled by (a, b, gamma) is an element of (A(g-2) circle times G, A(g-2) circle times G, Z(2)) and associated with nodes of the minimal analog of the Ocneanu quantum graph. Our results are illustrated using the Ising (A(2), A(3)) and 3-state Polls (A(4), D-4) models. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:429 / 435
页数:7
相关论文
共 30 条
[2]  
BAXTER RJ, 1989, SOLVED MODELS STAT M
[3]   Interaction-round-a-face models with fixed boundary conditions: The ABF fusion hierarchy [J].
Behrend, RE ;
Pearce, PA ;
OBrien, DL .
JOURNAL OF STATISTICAL PHYSICS, 1996, 84 (1-2) :1-48
[4]   Integrable boundaries, conformal boundary conditions and A-D-E fusion rules [J].
Behrend, RE ;
Pearce, PA ;
Zuber, JB .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (50) :L763-L770
[5]   On the classification of bulk and boundary conformal field theories [J].
Behrend, RE ;
Pearce, PA ;
Petkova, VB ;
Zuber, JB .
PHYSICS LETTERS B, 1998, 444 (1-2) :163-166
[6]   Boundary conditions in rational conformal field theories (vol B570, pg 525, 2000) [J].
Behrend, RE ;
Pearce, PA ;
Petkova, VB ;
Zuber, JB .
NUCLEAR PHYSICS B, 2000, 579 (03) :707-773
[7]  
BEHREND RE, 2001, P BAXT REV MATH PHYS, V102, P577
[8]   INFINITE CONFORMAL SYMMETRY IN TWO-DIMENSIONAL QUANTUM-FIELD THEORY [J].
BELAVIN, AA ;
POLYAKOV, AM ;
ZAMOLODCHIKOV, AB .
NUCLEAR PHYSICS B, 1984, 241 (02) :333-380
[9]   Chiral structure of modular invariants for subfactors [J].
Böckenhauer, J ;
Evans, DE ;
Kawahigashi, Y .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 210 (03) :733-784
[10]   On α-induction, chiral generators and modular invariants for subfactors [J].
Böckenhauer, J ;
Evans, DE ;
Kawahigashi, Y .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 208 (02) :429-487