Vector nonlinear Klein-Gordon lattices: General derivation of small amplitude envelope soliton solutions

被引:26
作者
Cocco, S
Barbi, M
Peyrard, M
机构
[1] Univ Rome La Sapienza, Dipartimento Sci Biochim, I-00185 Rome, Italy
[2] Ecole Normale Super Lyon, Phys Lab, CNRS URA 1325, F-69364 Lyon 07, France
[3] Univ Florence, Dipartimento Fis, Ist Nazl Fis Nucl, I-50125 Florence, Italy
关键词
D O I
10.1016/S0375-9601(99)00058-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Group velocity and group velocity dispersion for a wave packet in vectorial discrete Klein-Gordon models are obtained by an expansion, based on perturbation theory, of the linear system giving the dispersion relation and the normal modes. We show how to map this expansion on the multiple scale expansion in the real space and how to find nonlinear Schrodinger small amplitude solutions when a nonlinear on-site potential balances the group velocity dispersion effect, (C) 1999 Elsevier Science B.V.
引用
收藏
页码:161 / 167
页数:7
相关论文
共 4 条
[1]  
BARBI M, UNPUB PHYS LETT A
[2]  
Cohen-Tannoudji C., 1973, QUANTUM MECH
[3]  
Hasegawa A., 1995, Solitons in Optical Communications
[4]   LOW-AMPLITUDE BREATHER AND ENVELOPE SOLITONS IN QUASI-ONE-DIMENSIONAL PHYSICAL MODELS [J].
REMOISSENET, M .
PHYSICAL REVIEW B, 1986, 33 (04) :2386-2392