Subharmonicity in von Neumann algebras

被引:0
作者
Ransford, T [1 ]
Valley, M [1 ]
机构
[1] Univ Laval, Dept Math & Stat, Ste Foy, PQ G1K 7P4, Canada
关键词
von Neumann algebra; singular value; trace; determinant; subharmonic function;
D O I
10.4064/sm170-3-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let M be a von Neumann algebra with unit 1(M). Let tau be a faithful, normal, semifinite trace on M. Given x epsilon M, denote by mu(t)(x)t >= o the generalized s-numbers of x, defined by mu(t)(x) = inf{parallel to xe parallel to : e is a projection in M with tau(1(M) - e) <= t} (t >= 0). We prove that, if D is a complex domain and f : D -> M is a holomorphic function, then, for each t >= 0, lambda -> integral(0)(t) log mu(s) (f (lambda)) ds is a subharmonic function on D. This generalizes earlier subharmonicity results of White and Aupetit on the singular values of matrices.
引用
收藏
页码:219 / 226
页数:8
相关论文
共 13 条
[1]  
[Anonymous], 1968, BOLL UNIONE MAT ITAL
[2]  
Aupetit B, 1997, STUD MATH, V122, P195
[3]  
AUPETIT B, 1991, PRIMER SPECTRAL THEO
[4]  
BROWN L. G., 1986, GEOMETRIC METHODS OP, V123, P1
[5]  
DIXMIER J, 1969, ALGEBRAS OPERATEURS
[6]  
FACK T, 1982, J OPERAT THEOR, V7, P307
[7]   GENERALIZED S-NUMBERS OF TAU-MEASURABLE OPERATORS [J].
FACK, T ;
KOSAKI, H .
PACIFIC JOURNAL OF MATHEMATICS, 1986, 123 (02) :269-300
[8]   DETERMINANT THEORY IN FINITE FACTORS [J].
FUGLEDE, B ;
KADISON, RV .
ANNALS OF MATHEMATICS, 1952, 55 (03) :520-530
[9]   Brown's spectral distribution measure for R-diagonal elements in finite von Neumann algebras [J].
Haagerup, U ;
Larsen, F .
JOURNAL OF FUNCTIONAL ANALYSIS, 2000, 176 (02) :331-367
[10]   MAJORIZATIONS FOR GENERALIZED S-NUMBERS IN SEMIFINITE VONNEUMANN-ALGEBRAS [J].
HIAI, F ;
NAKAMURA, Y .
MATHEMATISCHE ZEITSCHRIFT, 1987, 195 (01) :17-27