Spatial estimates for a class of hyperbolic equations with nonlinear dissipative boundary conditions

被引:0
作者
Tahamtani, Faramarz [1 ]
Peyravi, Amir [1 ]
机构
[1] Shiraz Univ, Coll Sci, Dept Math, Shiraz 71454, Iran
关键词
Hyperbolic equation; Nonlinear boundary conditions; Phragmen-Lindelof type theorem; Asymptotic behavior; BIHARMONIC EQUATION; DECAY; PRINCIPLE; ELASTOSTATICS; ELASTICITY; CYLINDER; BEHAVIOR;
D O I
10.1186/1687-2770-2011-19
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with investigating the spatial behavior of solutions for a class of hyperbolic equations in semi-infinite cylindrical domains, where nonlinear dissipative boundary conditions imposed on the lateral surface of the cylinder. The main tool used is the weighted energy method. Mathematics Subject Classification (2010) 35B40, 35L05, 35L35.
引用
收藏
页码:1 / 9
页数:9
相关论文
共 22 条
[1]   Stabilization of second order evolution equations by a class of unbounded feedbacks [J].
Ammari, K ;
Tucsnak, M .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2001, 6 (14) :361-386
[2]  
[Anonymous], DEMONSTRATIO MATH
[3]   Spatial behavior estimates for the wave equation under nonlinear boundary conditions [J].
Celebi, AO ;
Kalantarov, VK .
MATHEMATICAL AND COMPUTER MODELLING, 2001, 34 (5-6) :527-532
[4]  
Flavin JamesN., 1996, Qualitative estimates for partial differential equations
[5]   KNOWLES VERSION OF SAINT-VENANTS PRINCIPLE IN 2-DIMENSIONAL ELASTOSTATICS [J].
FLAVIN, JN .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1974, 53 (04) :366-375
[6]   DECAY-ESTIMATES FOR THE CONSTRAINED ELASTIC CYLINDER OF VARIABLE CROSS-SECTION [J].
FLAVIN, JN ;
KNOPS, RJ ;
PAYNE, LE .
QUARTERLY OF APPLIED MATHEMATICS, 1989, 47 (02) :325-350
[7]   ASYMPTOTIC-BEHAVIOR OF SOLUTIONS TO SEMILINEAR ELLIPTIC-EQUATIONS ON THE HALF-CYLINDER [J].
FLAVIN, JN ;
KNOPS, RJ ;
PAYNE, LE .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1992, 43 (03) :405-421
[8]  
HARAUX A, 1989, J MATH PURE APPL, V68, P457
[9]  
Horgan C.O., 1996, APPL MECH REV, V49, pS101
[10]  
Horgan C.O., 1989, APPL MECH REV, V42, P295, DOI DOI 10.1115/1.3152414