Towards understanding the structure of voids in the cosmic web

被引:41
|
作者
Einasto, J. [1 ,2 ,3 ]
Suhhonenko, I. [1 ]
Huetsi, G. [1 ]
Saar, E. [1 ,2 ]
Einasto, M. [1 ]
Liivamaegi, L. J. [1 ]
Mueller, V. [4 ]
Starobinsky, A. A. [5 ,6 ]
Tago, E. [1 ]
Tempel, E. [1 ]
机构
[1] Tartu Observ, EE-61602 Toravere, Estonia
[2] Estonian Acad Sci, EE-10130 Tallinn, Estonia
[3] ICRANet, I-65122 Pescara, Italy
[4] Leibniz Inst Astrophys Potsdam, D-14482 Potsdam, Germany
[5] RAS, Landau Inst Theoret Phys, Moscow 119334, Russia
[6] Univ Tokyo, Grad Sch Sci, Res Ctr Early Universe RESCEU, Tokyo 1130033, Japan
来源
ASTRONOMY & ASTROPHYSICS | 2011年 / 534卷
基金
俄罗斯基础研究基金会;
关键词
large-scale structure of Universe; early Universe; cosmology: theory; LARGE-SCALE STRUCTURE; HALO OCCUPATION DISTRIBUTION; GALAXY REDSHIFT SURVEY; GRAVITATIONAL-INSTABILITY; DENSITY PERTURBATIONS; RICH CLUSTERS; MASS FUNCTION; RED GALAXIES; EVOLUTION; STATISTICS;
D O I
10.1051/0004-6361/201117248
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Context. According to the modern cosmological paradigm, cosmic voids form in low density regions between filaments of galaxies and superclusters. Aims. Our goal is to see how density waves of different scale combine to form voids between galaxy systems of various scales. Methods. We perform numerical simulations of structure formation in cubes of size 100, and 256 h(-1)Mpc, with resolutions 256(3) and 512(3) particles and cells. To understand the role of density perturbations of various scale, we cut power spectra on scales from 8 to 128 h(-1) Mpc, using otherwise in all cases identical initial random realisations. Results. We find that small haloes and short filaments form all over the simulation box, if perturbations only on scales as large as 8 h(-1) Mpc are present. We define density waves of scale >= 64 h(-1) Mpc as large, waves of scale similar or equal to 32 h(-1) Mpc as medium scale, and waves of scale similar or equal to 8 h(-1) Mpc as small scale, within a factor of two. Voids form in regions where medium- and large-scale density perturbations combine in negative parts of the waves because of the synchronisation of phases of medium- and large-scale density perturbations. In voids, the growth of potential haloes (formed in the absence of large-scale perturbations) is suppressed by the combined negative sections of medium- and large-scale density perturbations, so that their densities are less than the mean density, and thus during the evolution their densities do not increase. Conclusions. The phenomenon of large multi-scale voids in the cosmic web requires the presence of an extended spectrum of primordial density perturbations. The void phenomenon is due to the action of two processes: the synchronisation of density perturbations of medium and large scales, and the suppression of galaxy formation in low-density regions by the combined action of negative sections of medium- and large-scale density perturbations.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] The life and death of cosmic voids
    Sutter, P. M.
    Elahi, Pascal
    Falck, Bridget
    Onions, Julian
    Hamaus, Nico
    Knebe, Alexander
    Srisawat, Chaichalit
    Schneider, Aurel
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2014, 445 (02) : 1235 - 1244
  • [32] Statistics and geometry of cosmic voids
    Gaite, Jose
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2009, (11):
  • [33] Cosmic voids and the kinetic analysis
    Gurzadyan, V. G.
    Fimin, N. N.
    Chechetkin, V. M.
    ASTRONOMY & ASTROPHYSICS, 2025, 694
  • [34] NEUTRAL HYDROGEN IN COSMIC VOIDS
    KRUMM, N
    BROSCH, N
    ASTRONOMICAL JOURNAL, 1984, 89 (10): : 1461 - 1463
  • [35] Towards Understanding the Origin of Cosmic-Ray Electrons
    Zhang, Cheng
    EUROPEAN PHYSICAL SOCIETY CONFERENCE ON HIGH ENERGY PHYSICS, EPS-HEP2019, 2020,
  • [36] Towards Understanding the Origin of Cosmic-Ray Electrons
    Aguilar, M.
    Cavasonza, L. Ali
    Alpat, B.
    Ambrosi, G.
    Arruda, L.
    Attig, N.
    Azzarello, P.
    Bachlechner, A.
    Barao, F.
    Barrau, A.
    Barrin, L.
    Bartoloni, A.
    Basara, L.
    Basegmez-du Pree, S.
    Battiston, R.
    Becker, U.
    Behlmann, M.
    Beischer, B.
    Berdugo, J.
    Bertucci, B.
    Bindi, V
    de Boer, W.
    Bollweg, K.
    Borgia, B.
    Boschini, M. J.
    Bourquin, M.
    Bueno, E. F.
    Burger, J.
    Burger, W. J.
    Cai, X. D.
    Capell, M.
    Caroff, S.
    Casaus, J.
    Castellini, G.
    Cervelli, F.
    Chang, Y. H.
    Chen, G. M.
    Chen, H. S.
    Chen, Y.
    Cheng, L.
    Chou, H. Y.
    Choutko, V
    Chung, C. H.
    Clark, C.
    Coignet, G.
    Consolandi, C.
    Contin, A.
    Corti, C.
    Crispoltoni, M.
    Cui, Z.
    PHYSICAL REVIEW LETTERS, 2019, 122 (10)
  • [37] Towards Understanding the Origin of Cosmic-Ray Positrons
    Weng, Zhili
    37TH INTERNATIONAL COSMIC RAY CONFERENCE, ICRC2021, 2022,
  • [38] Towards Understanding the Origin of Cosmic-Ray Positrons
    Weng, Zhili
    36TH INTERNATIONAL COSMIC RAY CONFERENCE, ICRC2019, 2021,
  • [39] Towards Understanding the Origin of Cosmic-Ray Positrons
    Aguilar, M.
    Cavasonza, L. Ali
    Ambrosi, G.
    Arruda, L.
    Attig, N.
    Azzarello, P.
    Bachlechner, A.
    Barao, F.
    Barrau, A.
    Barrin, L.
    Bartoloni, A.
    Basara, L.
    Basegmez-du Pree, S.
    Battiston, R.
    Becker, U.
    Behlmann, M.
    Beischer, B.
    Berdugo, J.
    Bertucci, B.
    Bindi, V.
    de Boer, W.
    Bollweg, K.
    Borgia, B.
    Boschini, M. J.
    Bourquin, M.
    Bueno, E. F.
    Burger, J.
    Burger, W. J.
    Cai, X. D.
    Capell, M.
    Caroff, S.
    Casaus, J.
    Castellini, G.
    Cervelli, F.
    Chang, Y. H.
    Chen, G. M.
    Chen, H. S.
    Chen, Y.
    Cheng, L.
    Chou, H. Y.
    Choutko, V.
    Chung, C. H.
    Clark, C.
    Coignet, G.
    Consolandi, C.
    Contin, A.
    Corti, C.
    Crispoltoni, M.
    Cui, Z.
    Dadzie, K.
    PHYSICAL REVIEW LETTERS, 2019, 122 (04)
  • [40] Towards Understanding the Origin of Cosmic-Ray Electrons
    Krasnopevtsev, Dimitrii
    37TH INTERNATIONAL COSMIC RAY CONFERENCE, ICRC2021, 2022,