Irrelevance reduction with locality-sensitive hash learning for efficient cross-media retrieval

被引:3
|
作者
Jia, Yuhua [1 ]
Bai, Liang [1 ]
Wang, Peng [2 ]
Guo, Jinlin [1 ]
Xie, Yuxiang [1 ]
Yu, Tianyuan [1 ]
机构
[1] Natl Univ Def Technol, Sci & Technol Informat Syst Engn Lab, Changsha 410073, Hunan, Peoples R China
[2] Tsinghua Univ, Dept Comp Sci & Technol, Natl Lab Informat Sci & Technol, Beijing 100084, Peoples R China
关键词
Cross-media retrieval; Neural networks; Locality-sensitive hashing; Multimodal indexing; IMAGES;
D O I
10.1007/s11042-018-5692-3
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Cross-media retrieval is an imperative approach to handle the explosive growth of multimodal data on the web. However, existing approaches to cross-media retrieval are computationally expensive due to high dimensionality. To efficiently retrieve in multimodal data, it is essential to reduce the proportion of irrelevant documents. In this paper, we propose a fast cross-media retrieval approach (FCMR) based on locality-sensitive hashing (LSH) and neural networks. One modality of multimodal information is projected by LSH algorithm to cluster similar objects into the same hash bucket and dissimilar objects into different ones and then another modality is mapped into these hash buckets using hash functions learned through neural networks. Once given a textual or visual query, it can be efficiently mapped to a hash bucket in which objects stored can be near neighbors of this query. Experimental results show that, in the set of the queries' near neighbors obtained by the proposed method, the proportions of relevant documents can be much boosted, and it indicates that the retrieval based on near neighbors can be effectively conducted. Further evaluations on two public datasets demonstrate the efficacy of the proposed retrieval method compared to the baselines.
引用
收藏
页码:29435 / 29455
页数:21
相关论文
共 50 条
  • [41] CROSS-MODALITY CORRELATION PROPAGATION FOR CROSS-MEDIA RETRIEVAL
    Zhai, Xiaohua
    Peng, Yuxin
    Xiao, Jianguo
    2012 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2012, : 2337 - 2340
  • [42] Cross-media retrieval based on linear discriminant analysis
    Qi, Yudan
    Zhang, Huaxiang
    Zhang, Bin
    Wang, Li
    Zheng, Shunxin
    MULTIMEDIA TOOLS AND APPLICATIONS, 2019, 78 (17) : 24249 - 24268
  • [43] Bagging-based cross-media retrieval algorithm
    Xu, Gongwen
    Zhang, Yu
    Yin, Mingshan
    Hong, Wenzhong
    Zou, Ran
    Wang, Shanshan
    SOFT COMPUTING, 2023, 27 (05) : 2615 - 2623
  • [44] Online latent semantic hashing for cross-media retrieval
    Yao, Tao
    Wang, Gang
    Yan, Lianshan
    Kong, Xiangwei
    Su, Qingtang
    Zhang, Caiming
    Tian, Qi
    PATTERN RECOGNITION, 2019, 89 : 1 - 11
  • [45] Semantic convex matrix factorisation for cross-media retrieval
    Fang, Yixian
    Ren, Yuwei
    Zhang, Huaxiang
    IET IMAGE PROCESSING, 2019, 13 (01) : 196 - 205
  • [46] Discrete Semantic Alignment Hashing for Cross-Media Retrieval
    Yao, Tao
    Kong, Xiangwei
    Fu, Haiyan
    Tian, Qi
    IEEE TRANSACTIONS ON CYBERNETICS, 2020, 50 (12) : 4896 - 4907
  • [47] Finding the best picture: Cross-media retrieval of content
    Deschacht, Koen
    Moens, Marie-Francine
    ADVANCES IN INFORMATION RETRIEVAL, 2008, 4956 : 539 - 546
  • [48] ENHANCED ISOMORPHIC SEMANTIC REPRESENTATION FOR CROSS-MEDIA RETRIEVAL
    Liu, Ting
    Zhao, Yao
    Wei, Shikui
    Wei, Yunchao
    Liao, Lixin
    2017 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2017, : 967 - 972
  • [49] Cross-media retrieval based on linear discriminant analysis
    Yudan Qi
    Huaxiang Zhang
    Bin Zhang
    Li Wang
    Shunxin Zheng
    Multimedia Tools and Applications, 2019, 78 : 24249 - 24268
  • [50] An Approach for Mining Heterogeneous Data for Cross-Media Retrieval
    Pavan, K. Madhu
    Ananthanarayana, V. S.
    2013 FOURTH INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATIONS AND NETWORKING TECHNOLOGIES (ICCCNT), 2013,