Invariant Submanifolds of Hyperbolic Sasakian Manifolds and η-Ricci-Bourguignon Solitons

被引:12
|
作者
Chaubey, Sudhakar K. [1 ]
Siddiqi, M. Danish [2 ]
Prakasha, D. G. [3 ]
机构
[1] Univ Technol & Appl Sci Shinas, Dept Informat Technol, Sect Math, POB 77, Shinas 324, Oman
[2] Jazan Univ, Coll Sci, Dept Math, Jazan, Saudi Arabia
[3] Davangere Univ, Dept Studies Math, Shivagangothri Campus, Davangere 577007, India
关键词
Hyperbolic Sasakian manifolds; invariant and totally geodesic submanifolds; minimal submanifolds; concircular vector field; Ricci-Bourguignon flows; eta-Ricci-Bourguignon solitons;
D O I
10.2298/FIL2202409C
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We set the goal to study the properties of invariant submanifolds of the hyperbolic Sasakian manifolds. It is proven that a three-dimensional submanifold of a hyperbolic Sasakian manifold is totally geodesic if and only if it is invariant. Also, we discuss the properties of eta-Ricci-Bourguignon solitons on invariant submanifolds of the hyperbolic Sasakian manifolds. Finally, we construct a non-trivial example of a three-dimensional invariant submanifold of five-dimensional hyperbolic Sasakian manifold and validate some of our results.
引用
收藏
页码:409 / 421
页数:13
相关论文
共 50 条