Universal Algebraic Geometry

被引:4
|
作者
Daniyarova, E. Yu. [1 ]
Myasnikov, A. G. [1 ]
Remeslennikov, V. N. [1 ]
机构
[1] Stevens Inst Technol, Dept Math Sci, Schaefer Sch Engn & Sci, Hoboken, NJ 07030 USA
基金
俄罗斯基础研究基金会;
关键词
Algebraic Geometry; Algebraic Structure; DOKLADY Mathematic; Atomic Formula; Predicate Symbol;
D O I
10.1134/S1064562411050073
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Universal algebraic geometry over concrete algebraic structures is studied. An algebraic structure is considered and set of all simultaneous solutions of a system of equations is called the algebraic set. It is found that the category of algebraic sets over a L-structure and the category of coordinate algebras of algebraic sets are dually equivalent. Any non-empty algebraic set Y over an equationally Noetherian algebraic structure is a finite union of irreducible algebraic sets, then this decomposition is unique up to the order of the components. A structure is said to be separated by a structure if for every predicate symbol and every elements, there exists an L-homomorphism. A precise definition of direct systems and their direct limits is given using the language of diagram-formulas.
引用
收藏
页码:545 / 547
页数:3
相关论文
共 50 条
  • [1] Universal algebraic geometry
    E. Yu. Daniyarova
    A. G. Myasnikov
    V. N. Remeslennikov
    Doklady Mathematics, 2011, 84 : 545 - 547
  • [2] Dimension in universal algebraic geometry
    Daniyarova, E. Yu.
    Myasnikov, A. G.
    Remeslennikov, V. N.
    DOKLADY MATHEMATICS, 2014, 90 (01) : 450 - 452
  • [3] Dimension in universal algebraic geometry
    E. Yu. Daniyarova
    A. G. Myasnikov
    V. N. Remeslennikov
    Doklady Mathematics, 2014, 90 : 450 - 452
  • [4] Problems in algebra inspired by universal algebraic geometry
    Plotkin B.I.
    Journal of Mathematical Sciences, 2006, 139 (4) : 6780 - 6791
  • [5] Algebraic Geometry Over Algebraic Structures. IX. Principal Universal Classes and Dis-Limits
    Daniyarova, E. Yu.
    Myasnikov, A. G.
    Remeslennikov, V. N.
    ALGEBRA AND LOGIC, 2019, 57 (06) : 414 - 428
  • [6] Algebraic Geometry Over Algebraic Structures. IX. Principal Universal Classes and Dis-Limits
    E. Y. U. Daniyarova
    A. G. Myasnikov
    V. N. Remeslennikov
    Algebra and Logic, 2019, 57 : 414 - 428
  • [7] An invitation to algebraic geometry
    Marc Chardin
    The Mathematical Intelligencer, 2004, 26 (4) : 71 - 72
  • [8] Algebraic Geometry in Architectural Design
    Barczik, Guenter
    Labs, Oliver
    Lordick, Daniel
    ECAADE 2009: COMPUTATION: THE NEW REALM OF ARCHITECTURAL DESIGN, 2009, : 455 - 463
  • [9] Multivariate spline and algebraic geometry
    Wang, RH
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2000, 121 (1-2) : 153 - 163
  • [10] A foundation for synthetic algebraic geometry
    Cherubini, Felix
    Coquand, Thierry
    Hutzler, Matthias
    MATHEMATICAL STRUCTURES IN COMPUTER SCIENCE, 2024,