BarWare: efficient software tools for barcoded single-cell genomics

被引:2
作者
Swanson, Elliott [1 ,2 ]
Reading, Julian [1 ]
Graybuck, Lucas T. [1 ]
Skene, Peter J. [1 ]
机构
[1] Allen Inst Immunol, Seattle, WA 98109 USA
[2] Univ Washington, Sch Med, Dept Genome Sci, Seattle, WA USA
关键词
Single-cell RNA-seq; Cell hashing; Demultiplexing; Genomics;
D O I
10.1186/s12859-022-04620-2
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: Barcode-based multiplexing methods can be used to increase throughput and reduce batch effects in large single-cell genomics studies. Despite advantages in flexibility of sample collection and scale, there are additional complications in the data deconvolution steps required to assign each cell to their originating samples. Results: To meet computational needs for efficient sample deconvolution, we developed the tools BarCounter and BarMixer that compute barcode counts and deconvolute mixed single-cell data into sample-specific files, respectively. Together, these tools are implemented as the BarWare pipeline to support demultiplexing from large sequencing projects with many wells of hashed 10x Genomics scRNA-seq data. Conclusions: BarWare is a modular set of tools linked by shell scripting: BarCounter, a computationally efficient barcode sequence quantification tool implemented in C; and BarMixer, an R package for identification of barcoded populations, merging barcoded data from multiple wells, and quality-control reporting related to scRNA-seq data. These tools and a self-contained implementation of the pipeline are freely available for non-commercial use at https://github.com/Allenlnstitute/BarWare-pipeline.
引用
收藏
页数:14
相关论文
共 21 条
  • [1] Ameijeiras-Alonso J., 2018, Multimode: An R Package for Mode Assessment
  • [2] Barrett Tyson, 2024, CRAN
  • [3] Firke Sam, 2023, CRAN
  • [4] Highly multiplexed single-cell RNA-seq by DNA oligonucleotide tagging of cellular proteins
    Gehring, Jase
    Park, Jong Hwee
    Chen, Sisi
    Thomson, Matthew
    Pachter, Lior
    [J]. NATURE BIOTECHNOLOGY, 2020, 38 (01) : 35 - +
  • [5] Optimized workflow for human PBMC multiomic immunosurveillance studies
    Genge, Palak C.
    Roll, Charles R.
    Heubeck, Alexander T.
    Swanson, Elliott
    Kondza, Nina
    Lord, Cara
    Weiss, Morgan
    Hernandez, Veronica
    Phalen, Cole
    Thomson, Zachary
    Torgerson, Troy R.
    Skene, Peter J.
    Bumol, Thomas F.
    Reading, Julian
    [J]. STAR PROTOCOLS, 2021, 2 (04):
  • [6] Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression
    Hafemeister, Christoph
    Satija, Rahul
    [J]. GENOME BIOLOGY, 2019, 20 (01)
  • [7] Identification of an evolutionarily conserved transcriptional signature of CD8 memory differentiation that is shared by T and B cells
    Haining, W. Nicholas
    Ebert, Benjamin L.
    Subrmanian, Aravind
    Wherry, E. John
    Eichbaum, Quentin
    Evans, John W.
    Mak, Raymond
    Rivoli, Stephen
    Pretz, Jennifer
    Angelosanto, Jill
    Smutko, John S.
    Walker, Bruce D.
    Kaech, Susan M.
    Ahmed, Rafi
    Nadler, Lee M.
    Golub, Todd R.
    [J]. JOURNAL OF IMMUNOLOGY, 2008, 181 (03) : 1859 - 1868
  • [8] Integrated analysis of multimodal single-cell data
    Hao, Yuhan
    Hao, Stephanie
    Andersen-Nissen, Erica
    Mauck, William M. I. I. I. I. I. I.
    Zheng, Shiwei
    Butler, Andrew
    Lee, Maddie J.
    Wilk, Aaron J.
    Darby, Charlotte
    Zager, Michael
    Hoffman, Paul
    Stoeckius, Marlon
    Papalexi, Efthymia
    Mimitou, Eleni P.
    Jain, Jaison
    Srivastava, Avi
    Stuart, Tim
    Fleming, Lamar M.
    Yeung, Bertrand
    Rogers, Angela J.
    McElrath, Juliana M.
    Blish, Catherine A.
    Gottardo, Raphael
    Smibert, Peter
    Satija, Rahul
    [J]. CELL, 2021, 184 (13) : 3573 - +
  • [9] THE DIP TEST OF UNIMODALITY
    HARTIGAN, JA
    HARTIGAN, PM
    [J]. ANNALS OF STATISTICS, 1985, 13 (01) : 70 - 84
  • [10] Kolde Raivo, 2019, CRAN