A GENERAL ESTIMATE IN THE INVARIANCE PRINCIPLE

被引:0
|
作者
Sakhanenko, A. I. [1 ]
机构
[1] Yugra State Univ, Khanty Mansiisk, Russia
基金
俄罗斯基础研究基金会;
关键词
invariance principle; estimates for the rate of convergence; Komlos-Major-Tusnady estimates; method of the same probability space; PARTIAL SUMS; APPROXIMATION; MOMENTS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We obtain estimates for the accuracy with which a random broken line constructed from sums of independent nonidentically distributed random variables can be approximated by a Wiener process. All estimates depend explicitly on the moments of the random variables; meanwhile, these moments can be of a rather general form. In the case of identically distributed random variables we succeed for the first time in constructing an estimate depending explicitly on the common distribution of the summands and directly implying all results of the famous articles by Komlos, Major, and Tusnady which are devoted to estimates in the invariance principle.
引用
收藏
页码:696 / 710
页数:15
相关论文
共 50 条
  • [21] A strong invariance principle for associated sequences
    Yu, H
    ANNALS OF PROBABILITY, 1996, 24 (04) : 2079 - 2097
  • [22] The spectral shift function and the invariance principle
    Pushnitski, A
    JOURNAL OF FUNCTIONAL ANALYSIS, 2001, 183 (02) : 269 - 320
  • [23] The invariance principle for associated random fields
    Kim, TS
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1996, 26 (04) : 1443 - 1454
  • [24] The invariance principle in disturbance rejection control
    Li X.-Y.
    Gao Z.-Q.
    Kongzhi Lilun Yu Yingyong/Control Theory and Applications, 2020, 37 (02): : 236 - 244
  • [25] The invariance principle for p-θ chain
    Hu, Di He
    Xiao, Zheng Yan
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2007, 23 (01) : 41 - 56
  • [26] Invariance principle for the random conductance model
    S. Andres
    M. T. Barlow
    J.-D. Deuschel
    B. M. Hambly
    Probability Theory and Related Fields, 2013, 156 : 535 - 580
  • [27] Holderian invariance principle for linear processes
    Juodis, Mindaugas
    Rackauskas, Alfredas
    Suquet, Charles
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2009, 5 : 47 - 64
  • [28] The invariance principle in baseball: new evidence
    Rockerbie, Duane W.
    APPLIED ECONOMICS, 2018, 50 (23) : 2613 - 2621
  • [29] An Invariance Principle to Ferrari–Spohn Diffusions
    Dmitry Ioffe
    Senya Shlosman
    Yvan Velenik
    Communications in Mathematical Physics, 2015, 336 : 905 - 932
  • [30] Invariance principle for the random conductance model
    Andres, S.
    Barlow, M. T.
    Deuschel, J. -D.
    Hambly, B. M.
    PROBABILITY THEORY AND RELATED FIELDS, 2013, 156 (3-4) : 535 - 580