Relations in fuzzy class theory: Initial steps

被引:29
作者
Behounek, Libor [1 ]
Bodenhofer, Ulrich [2 ]
Cintula, Petr [1 ]
机构
[1] Acad Sci Czech Republ, Inst Comp Sci, Prague 18207 8, Czech Republic
[2] Johannes Kepler Univ Linz, Inst Bioinformat, A-4040 Linz, Austria
关键词
fuzzy class theory; fuzzy relation; fuzzy preorder; fuzzy equivalence relation; similarity; graded properties;
D O I
10.1016/j.fss.2007.10.012
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper studies fuzzy relations in the graded framework of Fuzzy Class Theory (FCT). This includes (i) rephrasing existing work on graded properties of binary fuzzy relations in the framework of Fuzzy Class Theory and (ii) generalizing existing crisp results on fuzzy relations to the graded framework. Our particular aim is to demonstrate that Fuzzy Class Theory is a powerful and easy-to-use instrument for handling fuzzified properties of fuzzy relations. This paper does not rephrase the whole theory of (fuzzy) relations; instead, it provides an illustrative introduction showing some representative results, with a strong emphasis on fuzzy preorders; and fuzzy equivalence relations. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:1729 / 1772
页数:44
相关论文
共 71 条
[1]  
[Anonymous], 1993, INTRO BASIC PRINCIPL
[2]  
[Anonymous], 1998, METAMATHEMATICS FUZZ
[3]   FUZZY POWER SETS AND FUZZY IMPLICATION OPERATORS [J].
BANDLER, W ;
KOHOUT, L .
FUZZY SETS AND SYSTEMS, 1980, 4 (01) :13-30
[4]   Fuzzy class theory [J].
Behounek, L ;
Cintula, P .
FUZZY SETS AND SYSTEMS, 2005, 154 (01) :34-55
[5]  
BEHOUNEK L, 2004, J GEN SYSTEMS, V33, P415
[6]  
BEHOUNEK L, 2001, J MATH ANAL APPL, V262, P473
[7]  
BEHOUNEK L, 2006, V939 AC SCI CZECH RE
[8]  
BEHOUNEK L, 2002, IFSR INT SERIES SYST, V20
[9]  
BEHOUNEK L, 2006, P 11 IPMU C PAR, P1604
[10]  
Behounek L, 2005, P LSC 4 4 WORKSH ERC, P22