A Data-Driven Iteratively Regularized Landweber Iteration

被引:18
|
作者
Aspri, A. [1 ]
Banert, S. [2 ]
Oktem, O. [2 ]
Scherzer, O. [1 ,3 ]
机构
[1] Johann Radon Inst Computat & Appl Math RICAM, Linz, Austria
[2] KTH Royal Inst Technol, Stockholm, Sweden
[3] Univ Vienna, Computat Sci Ctr, Vienna, Austria
关键词
Black box strategy; expert and data driven regularization; Iteratively regularized Landweber iteration; PRESSURE;
D O I
10.1080/01630563.2020.1740734
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We derive and analyze a new variant of the iteratively regularized Landweber iteration, for solving linear and nonlinear ill-posed inverse problems. The method takes into account training data, which are used to estimate the interior of a black box, which is used to define the iteration process. We prove convergence and stability for the scheme in infinite dimensional Hilbert spaces. These theoretical results are complemented by some numerical experiments for solving linear inverse problems for the Radon transform and a nonlinear inverse problem for Schlieren tomography.
引用
收藏
页码:1190 / 1227
页数:38
相关论文
共 50 条
  • [31] Online Dynamic Modelling for Digital Twin Enabled Sintering Systems: An Iterative Update Data-Driven Method
    Ding, Xuda
    Liu, Wei
    Ye, Jiale
    Chen, Cailian
    Guan, Xinping
    IET SIGNAL PROCESSING, 2023, 2023 (01)
  • [32] Logic-based data-driven operational risk model for augmented downhole petroleum production systems
    Mamudu, Abbas
    Khan, Faisal
    Zendehboudi, Sohrab
    Adedigba, Sunday
    COMPUTERS & CHEMICAL ENGINEERING, 2022, 165
  • [33] Experimental analysis and data-driven machine learning modelling of the minimum ignition temperature (MIT) of aluminium dust
    Arshad, Ushtar
    Taqvi, Syed Ali Ammar
    Buang, Azizul
    FUEL, 2022, 324
  • [34] Physics-based and data-driven modeling for basal stability evaluation of braced excavations in natural clays
    Lai, Van Qui
    Kounlavong, Khamnoy
    Keawsawasvong, Suraparb
    Wipulanusat, Warit
    Jamsawang, Pitthaya
    HELIYON, 2023, 9 (10)
  • [35] Data-driven design of metal-organic frameworks for wet flue gas CO2 capture
    Boyd, Peter G.
    Chidambaram, Arunraj
    Garcia-Diez, Enrique
    Ireland, Christopher P.
    Daff, Thomas D.
    Bounds, Richard
    Gladysiak, Andrzej
    Schouwink, Pascal
    Moosavi, Seyed Mohamad
    Maroto-Valer, M. Mercedes
    Reimer, Jeffrey A.
    Navarro, Jorge A. R.
    Woo, Tom K.
    Garcia, Susana
    Stylianou, Kyriakos C.
    Smit, Berend
    NATURE, 2019, 576 (7786) : 253 - +
  • [36] A data-driven shale gas production forecasting method based on the multi-objective random forest regression
    Xue, Liang
    Liu, Yuetian
    Xiong, Yifei
    Liu, Yanli
    Cui, Xuehui
    Lei, Gang
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2021, 196
  • [37] Data-driven estimation of three-phase saturation during gas hydrate depressurization using CT images
    Kim, Sungil
    Lee, Minhui
    Lee, Kyungbook
    Ahn, Taewoong
    Lee, Jaehyoung
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2021, 205
  • [38] Modeling large-volume subcutaneous injection of monoclonal antibodies with anisotropic porohyperelastic models and data-driven tissue layer
    de Lucio, Mario
    Leng, Yu
    Hans, Atharva
    Bilionis, Ilias
    Brindise, Melissa
    Ardekani, Arezoo M.
    Vlachos, Pavlos P.
    Gomez, Hector
    JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS, 2023, 138
  • [39] A computationally light data-driven approach for heat transfer and hydraulic characteristics modeling of supercritical fluids: From DNS to DNN
    Chu, Xu
    Chang, Wanli
    Pandey, Sandeep
    Luo, Jiayu
    Weigand, Bernhard
    Laurien, Eckart
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2018, 123 : 629 - 636
  • [40] Advancing nodal leakage estimation in decentralized water networks: Integrating Bayesian optimization, realistic hydraulic modeling, and data-driven approaches
    Pourahari, Amirali
    Amini, Ramin
    Yousefi-Khoshqalb, Ehsan
    SUSTAINABLE CITIES AND SOCIETY, 2024, 112