A Data-Driven Iteratively Regularized Landweber Iteration

被引:18
|
作者
Aspri, A. [1 ]
Banert, S. [2 ]
Oktem, O. [2 ]
Scherzer, O. [1 ,3 ]
机构
[1] Johann Radon Inst Computat & Appl Math RICAM, Linz, Austria
[2] KTH Royal Inst Technol, Stockholm, Sweden
[3] Univ Vienna, Computat Sci Ctr, Vienna, Austria
关键词
Black box strategy; expert and data driven regularization; Iteratively regularized Landweber iteration; PRESSURE;
D O I
10.1080/01630563.2020.1740734
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We derive and analyze a new variant of the iteratively regularized Landweber iteration, for solving linear and nonlinear ill-posed inverse problems. The method takes into account training data, which are used to estimate the interior of a black box, which is used to define the iteration process. We prove convergence and stability for the scheme in infinite dimensional Hilbert spaces. These theoretical results are complemented by some numerical experiments for solving linear inverse problems for the Radon transform and a nonlinear inverse problem for Schlieren tomography.
引用
收藏
页码:1190 / 1227
页数:38
相关论文
共 50 条
  • [21] Adaptive neural control of PEMFC system based on data-driven and reinforcement learning approaches
    Lin-Kwong-Chon, Christophe
    Damour, Cedric
    Benne, Michel
    Kadjo, Jean-Jacques Amangoua
    Grondin-Perez, Brigitte
    CONTROL ENGINEERING PRACTICE, 2022, 120
  • [22] Data-Driven Prediction of Minimum Fluidization Velocity in Gas-Fluidized Beds Using Data Extracted by Text Mining
    Zhou, Jibin
    Liu, Duiping
    Ye, Mao
    Liu, Zhongmin
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2021, 60 (37) : 13727 - 13739
  • [23] Experimental Data-Driven Study for the Choice of Fabrication Process for Pirani-Based Multifunction Sensor
    Zhang, Ming
    Llaser, Nicolas
    IEEE SENSORS JOURNAL, 2021, 21 (18) : 19797 - 19805
  • [24] Data-driven optimal sensor placement for high-dimensional system using annealing machine
    Matsuda, Yu
    Inoue, Tomoki
    Ikami, Tsubasa
    Egami, Yasuhiro
    Nagai, Hiroki
    Naganuma, Yasuo
    Kimura, Koichi
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2023, 188
  • [25] Data-driven application of MEMS-based accelerometers for leak detection in water distribution networks
    Tariq, Salman
    Bakhtawar, Beenish
    Zayed, Tarek
    SCIENCE OF THE TOTAL ENVIRONMENT, 2022, 809
  • [26] Gradient Information and Regularization for Gene Expression Programming to Develop Data-Driven Physics Closure Models
    Waschkowski, Fabian
    Li, Haochen
    Deshmukh, Abhishek
    Grenga, Temistocle
    Zhao, Yaomin
    Pitsch, Heinz
    Klewicki, Joseph
    Sandberg, Richard D.
    FLOW TURBULENCE AND COMBUSTION, 2025, 114 (01) : 145 - 175
  • [27] Patient-specific modeling for left ventricular mechanics using data-driven boundary energies
    Asner, L.
    Hadjicharalambous, M.
    Chabiniok, R.
    Peressutti, D.
    Sammut, E.
    Wong, J.
    Carr-White, G.
    Razavi, R.
    King, A. P.
    Smith, N.
    Lee, J.
    Nordsletten, D.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2017, 314 : 269 - 295
  • [28] Data-driven remaining useful life estimation of subsea pipelines under effect of interacting corrosion defects
    Hosseinzadeh, Soheyl
    Bahaari, Mohammadreza
    Abyani, Mohsen
    Taheri, Milad
    APPLIED OCEAN RESEARCH, 2025, 155
  • [29] Data-driven subfilter modelling of thermo-diffusively unstable hydrogen-air premixed flames
    Lapenna, Pasquale Eduardo
    Berger, Lukas
    Attili, Antonio
    Lamioni, Rachele
    Fogla, Navin
    Pitsch, Heinz
    Creta, Francesco
    COMBUSTION THEORY AND MODELLING, 2021, 25 (06) : 1064 - 1085
  • [30] Unveiling Cryosphere Dynamics by Distributed Acoustic Sensing and Data-Driven Hydro-Thermo Coupled Simulation
    Sun, Haoyuan
    Cheng, Feng
    Xia, Jianghai
    Guan, Jianbo
    Li, Zefeng
    Ajo-Franklin, Jonathan B.
    GEOPHYSICAL RESEARCH LETTERS, 2025, 52 (02)