Riemannian subspace tracking algorithms on Grassmann manifolds

被引:0
|
作者
Baumann, M. [1 ]
Helmke, U. [1 ]
机构
[1] Univ Wurzburg, Dept Math, D-97074 Wurzburg, Germany
来源
PROCEEDINGS OF THE 46TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-14 | 2007年
关键词
adaptive subspace tracking; eigenvalue methods; Newton algorithm; Riemannian metrics; Grassmann manifolds;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Based on the differential geometry of the Grassmann manifold, we propose a new class of Newton-type algorithms for adaptively computing the principal and minor subspaces of a time-varying family of symmetric matrices. Using local parameterization of the Grassmann manifold, simple expressions for the subspace tracking schemes are derived. Key benefits of the algorithms are (a) the reduced computational complexity due to efficient parametrizations of the Grassmannian and (b) their guaranteed accuracy during all iterates. Numerical simulations illustrate the feasibility of the approach.
引用
收藏
页码:553 / 558
页数:6
相关论文
共 50 条