Riemannian subspace tracking algorithms on Grassmann manifolds

被引:0
|
作者
Baumann, M. [1 ]
Helmke, U. [1 ]
机构
[1] Univ Wurzburg, Dept Math, D-97074 Wurzburg, Germany
来源
PROCEEDINGS OF THE 46TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-14 | 2007年
关键词
adaptive subspace tracking; eigenvalue methods; Newton algorithm; Riemannian metrics; Grassmann manifolds;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Based on the differential geometry of the Grassmann manifold, we propose a new class of Newton-type algorithms for adaptively computing the principal and minor subspaces of a time-varying family of symmetric matrices. Using local parameterization of the Grassmann manifold, simple expressions for the subspace tracking schemes are derived. Key benefits of the algorithms are (a) the reduced computational complexity due to efficient parametrizations of the Grassmannian and (b) their guaranteed accuracy during all iterates. Numerical simulations illustrate the feasibility of the approach.
引用
收藏
页码:553 / 558
页数:6
相关论文
共 50 条
  • [1] ON RIEMANNIAN STRUCTURE OF REAL AND COMPLEX GRASSMANN MANIFOLDS
    HANGAN, T
    TENSOR, 1967, 18 (01): : 26 - &
  • [2] A Riemannian gossip approach to subspace learning on Grassmann manifold
    Mishra, Bamdev
    Kasai, Hiroyuki
    Jawanpuria, Pratik
    Saroop, Atul
    MACHINE LEARNING, 2019, 108 (10) : 1783 - 1803
  • [3] A Riemannian gossip approach to subspace learning on Grassmann manifold
    Bamdev Mishra
    Hiroyuki Kasai
    Pratik Jawanpuria
    Atul Saroop
    Machine Learning, 2019, 108 : 1783 - 1803
  • [4] A SUBSPACE METHOD FOR OPTIMIZATION ON RIEMANNIAN MANIFOLDS
    Wei, Hejie
    PACIFIC JOURNAL OF OPTIMIZATION, 2019, 15 (02): : 279 - 294
  • [5] Riemannian geometry of Grassmann manifolds with a view on algorithmic computation
    Absil, PA
    Mahony, R
    Sepulchre, R
    ACTA APPLICANDAE MATHEMATICAE, 2004, 80 (02) : 199 - 220
  • [6] Riemannian Geometry of Grassmann Manifolds with a View on Algorithmic Computation
    P.-A. Absil
    R. Mahony
    R. Sepulchre
    Acta Applicandae Mathematica, 2004, 80 : 199 - 220
  • [7] Efficient algorithms for inferences on Grassmann manifolds
    Gallivan, KA
    Srivastava, A
    Liu, XW
    Van Dooren, P
    PROCEEDINGS OF THE 2003 IEEE WORKSHOP ON STATISTICAL SIGNAL PROCESSING, 2003, : 315 - 318
  • [8] Conjugate gradient on Grassmann manifolds for robust subspace estimation
    Mittal, Sushil
    Meer, Peter
    IMAGE AND VISION COMPUTING, 2012, 30 (6-7) : 417 - 427
  • [9] Probabilistic Tracking on Riemannian Manifolds
    Wu, Yi
    Wu, Bo
    Liu, Jia
    Lu, Hanqing
    19TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOLS 1-6, 2008, : 229 - +
  • [10] Principal subspace flows via mechanical systems on Grassmann manifolds
    Helmke, Uwe
    Krishnaprasad, P. S.
    LAGRANGIAN AND HAMILTONIAN METHODS FOR NONLINEAR CONTROL 2006, 2007, 366 : 259 - +