Boltzmann to Landau from the gradient flow perspective

被引:10
作者
Carrillo, Jose A. [1 ]
Delgadino, Matias G. [2 ]
Wu, Jeremy [1 ]
机构
[1] Univ Oxford, Math Inst, Oxford OX2 6GG, England
[2] Univ Texas Austin, Dept Math, Austin, TX 78712 USA
基金
欧洲研究理事会;
关键词
Boltzmann equation; Plasma particles; Kinetic theory; Gamma-convergence; Gradient flows; SPATIALLY HOMOGENEOUS BOLTZMANN; GRAZING COLLISIONS; GAMMA-CONVERGENCE; EQUATION; REGULARITY; EVOLUTION; LIMIT;
D O I
10.1016/j.na.2022.112824
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We revisit the grazing collision limit connecting the Boltzmann equation to the Landau(-Fokker-Planck) equation from their recent reinterpretations as gradient flows. Our results are in the same spirit as the gamma-convergence of gradient flows technique introduced by Sandier and Serfaty [39]; Serfaty [41]. In this setting, the grazing collision limit reduces to showing the lower semi-continuous convergence of the Boltzmann entropy-dissipation to the Landau entropy-dissipation. (C) 2022 The Author(s). Published by Elsevier Ltd.
引用
收藏
页数:49
相关论文
共 43 条
[21]  
Desvillettes L., 2016, Springer Proc. Math. Stat., V162, P121
[22]   ON THE CAUCHY-PROBLEM FOR BOLTZMANN EQUATIONS - GLOBAL EXISTENCE AND WEAK STABILITY [J].
DIPERNA, RJ ;
LIONS, PL .
ANNALS OF MATHEMATICS, 1989, 130 (02) :321-366
[23]   ORDINARY DIFFERENTIAL-EQUATIONS, TRANSPORT-THEORY AND SOBOLEV SPACES [J].
DIPERNA, RJ ;
LIONS, PL .
INVENTIONES MATHEMATICAE, 1989, 98 (03) :511-547
[24]  
Erbar M, 2019, ARXIV PREPRINT ARXIV
[25]   On the uniqueness for the spatially homogeneous boltzmann equation with a strong angular singularity [J].
Fournier, Nicolas ;
Guerin, Helene .
JOURNAL OF STATISTICAL PHYSICS, 2008, 131 (04) :749-781
[26]   On the Well-Posedness of the Spatially Homogeneous Boltzmann Equation with a Moderate Angular Singularity [J].
Fournier, Nicolas ;
Mouhot, Clement .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 289 (03) :803-824
[27]   Asymptotic of grazing collisions for the spatially homogeneous Boltzmann equation for soft and Coulomb potentials [J].
Godinho, David .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2013, 123 (11) :3987-4039
[28]   REGULARITY OF THE MOMENTS OF THE SOLUTION OF A TRANSPORT-EQUATION [J].
GOLSE, F ;
LIONS, PL ;
PERTHAME, B ;
SENTIS, R .
JOURNAL OF FUNCTIONAL ANALYSIS, 1988, 76 (01) :110-125
[29]   On Boltzmann equations and Fokker-Planck asymptotics: Influence of grazing collisions [J].
Goudon, T .
JOURNAL OF STATISTICAL PHYSICS, 1997, 89 (3-4) :751-776
[30]   Asymptotic Analysis of the Spatially Homogeneous Boltzmann Equation: Grazing Collisions Limit [J].
He, Lingbing .
JOURNAL OF STATISTICAL PHYSICS, 2014, 155 (01) :151-210