Boltzmann to Landau from the gradient flow perspective

被引:10
作者
Carrillo, Jose A. [1 ]
Delgadino, Matias G. [2 ]
Wu, Jeremy [1 ]
机构
[1] Univ Oxford, Math Inst, Oxford OX2 6GG, England
[2] Univ Texas Austin, Dept Math, Austin, TX 78712 USA
基金
欧洲研究理事会;
关键词
Boltzmann equation; Plasma particles; Kinetic theory; Gamma-convergence; Gradient flows; SPATIALLY HOMOGENEOUS BOLTZMANN; GRAZING COLLISIONS; GAMMA-CONVERGENCE; EQUATION; REGULARITY; EVOLUTION; LIMIT;
D O I
10.1016/j.na.2022.112824
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We revisit the grazing collision limit connecting the Boltzmann equation to the Landau(-Fokker-Planck) equation from their recent reinterpretations as gradient flows. Our results are in the same spirit as the gamma-convergence of gradient flows technique introduced by Sandier and Serfaty [39]; Serfaty [41]. In this setting, the grazing collision limit reduces to showing the lower semi-continuous convergence of the Boltzmann entropy-dissipation to the Landau entropy-dissipation. (C) 2022 The Author(s). Published by Elsevier Ltd.
引用
收藏
页数:49
相关论文
共 43 条
[1]   Quasi-static evolution and congested crowd transport [J].
Alexander, Damon ;
Kim, Inwon ;
Yao, Yao .
NONLINEARITY, 2014, 27 (04) :823-858
[2]   Entropy dissipation and long-range interactions [J].
Alexandre, R ;
Desvillettes, L ;
Villani, C ;
Wennberg, B .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2000, 152 (04) :327-355
[3]   On the Landau approximation in plasma physics [J].
Alexandre, R ;
Villani, C .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2004, 21 (01) :61-95
[4]   On the Boltzmann equation for long-range interactions [J].
Alexandre, R ;
Villani, C .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2002, 55 (01) :30-70
[5]  
Ambrosio L., 2008, LECT MATH ETH ZURICH, P334
[6]  
ARKERYD L, 1972, ARCH RATION MECH AN, V45, P17
[7]  
ARKERYD L, 1972, ARCH RATION MECH AN, V45, P1
[8]   Passing to the limit in a Wasserstein gradient flow: from diffusion to reaction [J].
Arnrich, Steffen ;
Mielke, Alexander ;
Peletier, Mark A. ;
Savare, Giuseppe ;
Veneroni, Marco .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2012, 44 (3-4) :419-454
[9]  
Arsenev A.A., 1990, Mat. Sb., V181, P435
[10]   CONVERGENCE OF THE ONE-DIMENSIONAL CAHN-HILLIARD EQUATION [J].
Bellettini, Giovanni ;
Bertini, Lorenzo ;
Mariani, Mauro ;
Novaga, Matteo .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2012, 44 (05) :3458-3480