A practical design for a dual-agent dose-escalation trial that incorporates pharmacokinetic data

被引:3
|
作者
Cotterill, Amy [1 ]
Lorand, Daniel [2 ]
Wang, Jixian [3 ]
Jaki, Thomas [1 ]
机构
[1] Univ Lancaster, Med & Pharmaceut Stat Res Unit, Dept Math & Stat, Lancaster, England
[2] Novartis Pharma AG, Novartis Oncol Biometr & Data Management, Basel, Switzerland
[3] Celgene Int Boudry, Biometr & Data Operat, Boudry, Switzerland
基金
美国国家卫生研究院;
关键词
dose-escalation; pharmacokinetic data; dual-agent; escalation rules; combination treatment; CONTINUAL REASSESSMENT METHOD; PHASE-I TRIALS; CLINICAL-TRIALS; BAYESIAN-APPROACH; ADAPTIVE DESIGNS; CANCER; COMBINATION; EFFICACY; REGRESSION;
D O I
10.1002/sim.6482
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Traditionally, model-based dose-escalation trial designs recommend a dose for escalation based on an assumed dose-toxicity relationship. Pharmacokinetic data are often available but are currently only utilised by clinical teams in a subjective manner to aid decision making if the dose-toxicity model recommendation is felt to be too high. Formal incorporation of pharmacokinetic data in dose-escalation could therefore make the decision process more efficient and lead to an increase in the precision of the resulting recommended dose, as well as decreasing the subjectivity of its use. Such an approach is investigated in the dual-agent setting using a Bayesian design, where historical single-agent data are available to advise the use of pharmacokinetic data in the dual-agent setting. The dose-toxicity and dose-exposure relationships are modelled independently and the outputs combined in the escalation rules. Implementation of stopping rules highlight the practicality of the design. This is demonstrated through an example which is evaluated using simulation. Copyright (c) 2015 John Wiley & Sons, Ltd.
引用
收藏
页码:2138 / 2164
页数:27
相关论文
共 50 条
  • [1] Adaptive designs for dual-agent phase I dose-escalation studies
    Harrington, Jennifer A.
    Wheeler, Graham M.
    Sweeting, Michael J.
    Mander, Adrian P.
    Jodrell, Duncan I.
    NATURE REVIEWS CLINICAL ONCOLOGY, 2013, 10 (05) : 277 - 288
  • [2] Adaptive designs for dual-agent phase I dose-escalation studies
    Jennifer A. Harrington
    Graham M. Wheeler
    Michael J. Sweeting
    Adrian P. Mander
    Duncan I. Jodrell
    Nature Reviews Clinical Oncology, 2013, 10 : 277 - 288
  • [3] A product of independent beta probabilities dose escalation design for dual-agent phase I trials
    Mander, Adrian P.
    Sweeting, Michael J.
    STATISTICS IN MEDICINE, 2015, 34 (08) : 1261 - 1276
  • [4] A novel Bayesian method for dual-agent Phase I dose-escalation studies using penalized D-optimality
    Graham Wheeler
    Trials, 14 (Suppl 1)
  • [5] Practical Implementation of Bayesian Dose-Escalation Procedures
    Yinghui Zhou
    John Whitehead
    Drug information journal : DIJ / Drug Information Association, 2003, 37 : 45 - 59
  • [6] Practical implementation of Bayesian dose-escalation procedures
    Zhou, YH
    Whitehead, J
    DRUG INFORMATION JOURNAL, 2003, 37 (01): : 45 - 59
  • [7] Safety, pharmacokinetic, pharmacodynamic, and efficacy data for the oral MEK inhibitor trametinib: a phase 1 dose-escalation trial
    Infante, Jeffrey R.
    Fecher, Leslie A.
    Falchook, Gerald S.
    Nallapareddy, Sujatha
    Gordon, Michael S.
    Becerra, Carlos
    DeMarini, Douglas J.
    Cox, Donna S.
    Xu, Yanmei
    Morris, Shannon R.
    Peddareddigari, Vijay G. R.
    Le, Ngocdiep T.
    Hart, Lowell
    Bendell, Johanna C.
    Eckhardt, Gail
    Kurzrock, Razelle
    Flaherty, Keith
    Burris, Howard A., III
    Messersmith, Wells A.
    LANCET ONCOLOGY, 2012, 13 (08): : 773 - 781
  • [8] A comparison of model-free phase I dose escalation designs for dual-agent combination therapies
    Barnett, Helen
    George, Matthew
    Skanji, Donia
    Saint-Hilary, Gaelle
    Jaki, Thomas
    Mozgunov, Pavel
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2024, 33 (02) : 203 - 226
  • [9] Dual-agent dose-finding in Phase I clinical trial-An extension of rapid enrollment design
    Wang, Yunfei
    STATISTICS IN MEDICINE, 2024, 43 (22) : 4361 - 4371
  • [10] Implementation of a Bayesian design in a dose-escalation study of an experimental agent in healthy volunteers
    Zhou, Yinghui
    Whitehead, John
    Korhonen, Pasi
    Mustonen, Mika
    BIOMETRICS, 2008, 64 (01) : 299 - 308