Preserving the privacy of sensitive relationships in graph data

被引:0
作者
Zheleva, Elena [1 ]
Getoor, Lise [1 ]
机构
[1] Univ Maryland, Dept Comp Sci, College Pk, MD 20742 USA
来源
PRIVACY, SECURITY, AND TRUST IN KDD | 2008年 / 4890卷
关键词
privacy; anonymization; identification; link mining; social network analysis; noisy-or; graph data;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we focus on the problem of preserving the privacy of sensitive relationships in graph data. We refer to the problem of inferring sensitive relationships from anonymized graph data as link reidentification. We propose five different privacy preservation strategies, which vary in terms of the amount of data removed (and hence their utility) and the amount of privacy preserved. We assume the adversary has an accurate predictive model for links, and we show experimentally the success of different link re-identification strategies under varying structural characteristics of the data.
引用
收藏
页码:153 / 171
页数:19
相关论文
共 18 条
  • [1] Aggarwal G, 2005, P INT C DAT THEOR
  • [2] [Anonymous], 1988, PROBABILISTIC REASON, DOI DOI 10.1016/C2009-0-27609-4
  • [3] [Anonymous], 2003, ACM Symposium on Principles of Database Systems, DOI DOI 10.1145/773153.773174
  • [4] [Anonymous], 2006, 22 IEEE INT C DAT EN
  • [5] [Anonymous], ANONYMIZING SOCIAL N
  • [6] Backstrom L, 2007, P 16 INT C WORLD WID, P181, DOI [DOI 10.1145/1242572.1242598, 10.1145/1242572.1242598]
  • [7] BAYARDO R, 2005, IEEE 21 INT C DAT EN
  • [8] CHAWLA S, 2005, P THEOR CRYPT C
  • [9] Getoor L., 2005, SIGKDD EXPLORATIONS, V7, P3, DOI [DOI 10.1145/1117454.1117456, 10.1145/1117454.1117456]
  • [10] On-chip continuous blood cell sub-type separation by deterministic lateral displacement
    Li, Nan
    Kamei, Daniel T.
    Ho, Chili-Ming
    [J]. 2007 2ND IEEE INTERNATIONAL CONFERENCE ON NANO/MICRO ENGINEERED AND MOLECULAR SYSTEMS, VOLS 1-3, 2007, : 692 - +