Glomalin-related soil protein responses to elevated CO2 and nitrogen addition in a subtropical forest: Potential consequences for soil carbon accumulation

被引:66
作者
Zhang, Jing [1 ,2 ]
Tang, Xuli [1 ]
He, Xinhua [3 ,4 ]
Liu, Juxiu [1 ]
机构
[1] Chinese Acad Sci, South China Bot Garden, Key Lab Vegetat Restorat & Management Degraded Ec, Guangzhou 510650, Guangdong, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Univ Sydney, Dept Environm Sci, Eveleigh, NSW 2015, Australia
[4] Univ Western Australia, Sch Plant Biol, Crawley, WA 6009, Australia
基金
中国国家自然科学基金;
关键词
Elevated CO2; N deposition; Glomalin; Soil organic carbon; Subtropical forest; ARBUSCULAR MYCORRHIZAL FUNGI; SIMULATED N DEPOSITION; AGGREGATE STABILITY; BIOMASS ACCUMULATION; ATMOSPHERIC CO2; TROPICAL FOREST; ECOSYSTEMS; SEQUESTRATION; DIOXIDE; ALLOCATION;
D O I
10.1016/j.soilbio.2015.01.023
中图分类号
S15 [土壤学];
学科分类号
0903 ; 090301 ;
摘要
According to the economy theory, plants should preferentially allocate photosynthate to acquire below-ground resources under elevated atmospheric carbon dioxide (eCO(2)) but decrease below-ground C allocation when nitrogen (N) is sufficient for plant growth. Arbuscular mycorrhizae (AM) represent a critical mechanism of below-ground nutrient acquisition for plants. The dynamics of arbuscular mycorrhizal fungi (AMF) could therefore reflect the response of plant C allocation under eCO(2) and N addition. We examined the responses of glomalin-related soil protein (GRSP) to eCO(2) (approximately 700 mu mol mol(-1) CO2) and/or N addition (100 kg N ha(-1) yr(-1) as NH4NO3) in a modeled subtropical forest to better understand its potential influence on soil C storage. We hypothesized that GRSP would increase under eCO(2) and decrease under N addition. Furthermore, the positive effects of eCO(2) on GRSP would be offset by extra N addition, and GRSP would remain unchanged under combined eCO(2) and N addition. Our results showed that the mean concentrations of easily extractable GRSP (EE-GRSP) and total GRSP (T-GRSP) were 0.35 +/- 0.05 and 0.72 +/- 0.13 mg C cm(-3), respectively, which accounted for 2.76 +/- 0.53% and 5.67 +/- 0.92% of soil organic carbon (SOC) in the 0-10 cm soil layer. Elevated CO2 significantly increased T-GRSP by 35.02% but decreased EE-GRSP by 5.09% in the top 10 cm soil layer. The opposite responses of T-GRSP and EE-GRSP to eCO(2) might result from an unchanged photosynthate investment to AMF with possible changes in their decomposition rates. The effect of N on GRSP was contrary to our hypothesis, i.e., there was a 1.72%-48.49% increase in T-GRSP and a slightly increase in EE-GRSP. Both EE-GRSP and T-GRSP concentrations increased under the combination of eCO(2) and N addition, which was inconsistent with our hypothesis. The significant increase of EE-GRSP under the combination of eCO(2) and N addition was partly caused by more rapid plant growth and reduced microbial diversity, and the marginal increase of T-GRSP indicated that the interaction between eCO(2) and N addition offset their independent effects. In addition, the relatively higher accumulation ratios of GRSP (22.6 +/- 13.6%) compared with SOC (15.9 +/- 9.4%) indicated that more rapid GRSP deposition in the soil might accelerate SOC accumulation under eCO(2) and N addition. Our results will improve the understanding of the functioning of GRSP in soil C sequestration under global environmental change scenarios. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:142 / 149
页数:8
相关论文
共 52 条
[1]  
[Anonymous], 1982, METHODS SOIL ANAL PA
[2]   Responses of Bradford-reactive soil protein to experimental nitrogen addition in three forest communities in northern lower Michigan [J].
Antibus, Robert K. ;
Lauber, Chris ;
Sinsabaugh, Robert L. ;
Zak, Donald R. .
PLANT AND SOIL, 2006, 288 (1-2) :173-187
[3]   THE RESPONSE OF NATURAL ECOSYSTEMS TO THE RISING GLOBAL CO2 LEVELS [J].
BAZZAZ, FA .
ANNUAL REVIEW OF ECOLOGY AND SYSTEMATICS, 1990, 21 :167-196
[4]   Spatial heterogeneity of aggregate stability and soil carbon in semi-arid rangeland [J].
Bird, SB ;
Herrick, JE ;
Wander, MM ;
Wright, SF .
ENVIRONMENTAL POLLUTION, 2002, 116 (03) :445-455
[5]   Altered soil microbial community at elevated CO2 leads to loss of soil carbon [J].
Carney, Karen M. ;
Hungate, Bruce A. ;
Drake, Bert G. ;
Megonigal, J. Patrick .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (12) :4990-4995
[6]   Effects of elevated CO2 and nitrogen addition on soil organic carbon fractions in a subtropical forest [J].
Chen, Xiaomei ;
Liu, Juxiu ;
Deng, Qi ;
Yan, Junhua ;
Zhang, Deqiang .
PLANT AND SOIL, 2012, 357 (1-2) :25-34
[7]   Roots and Associated Fungi Drive Long-Term Carbon Sequestration in Boreal Forest [J].
Clemmensen, K. E. ;
Bahr, A. ;
Ovaskainen, O. ;
Dahlberg, A. ;
Ekblad, A. ;
Wallander, H. ;
Stenlid, J. ;
Finlay, R. D. ;
Wardle, D. A. ;
Lindahl, B. D. .
SCIENCE, 2013, 339 (6127) :1615-1618
[8]   Responses of soil respiration to elevated carbon dioxide and nitrogen addition in young subtropical forest ecosystems in China [J].
Deng, Q. ;
Zhou, G. ;
Liu, J. ;
Liu, S. ;
Duan, H. ;
Zhang, D. .
BIOGEOSCIENCES, 2010, 7 (01) :315-328
[9]  
Duan Hong-Lang, 2009, Chinese Journal of Plant Ecology, V33, P570, DOI 10.3773/j.issn.1005-264x.2009.03.016
[10]  
Fang YT, 2006, J ENVIRON SCI, V18, P752