Variable selection for case-cohort studies with failure time outcome

被引:16
作者
Ni, Ai [1 ]
Cai, Jianwen [1 ]
Zeng, Donglin [1 ]
机构
[1] Univ North Carolina Chapel Hill, Dept Biostat, 3101 McGavran Greenberg Hall,CB 7420, Chapel Hill, NC 27599 USA
基金
美国国家卫生研究院;
关键词
Case-cohort design; Diverging number of parameters; Oracle property; Smoothly clipped absolute deviation; Survival analysis; Variable selection; TUNING PARAMETER SELECTION; DIVERGING NUMBER; MODEL-SELECTION; PENALIZED LIKELIHOOD; ORACLE PROPERTIES; HAZARDS MODEL; DISEASE; LASSO; ESTIMATORS; REGRESSION;
D O I
10.1093/biomet/asw027
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Case-cohort designs are widely used in large cohort studies to reduce the cost associated with covariate measurement. In many such studies the number of covariates is very large, so an efficient variable selection method is necessary. In this paper, we study the properties of a variable selection procedure using the smoothly clipped absolute deviation penalty in a case-cohort design with a diverging number of parameters. We establish the consistency and asymptotic normality of the maximum penalized pseudo-partial-likelihood estimator, and show that the proposed variable selection method is consistent and has an asymptotic oracle property. Simulation studies compare the finite-sample performance of the procedure with tuning parameter selection methods based on the Akaike information criterion and the Bayesian information criterion. We make recommendations for use of the proposed procedures in case-cohort studies, and apply them to the Busselton Health Study.
引用
收藏
页码:547 / 562
页数:16
相关论文
共 38 条
[1]   MAXIMUM LIKELIHOOD IDENTIFICATION OF GAUSSIAN AUTOREGRESSIVE MOVING AVERAGE MODELS [J].
AKAIKE, H .
BIOMETRIKA, 1973, 60 (02) :255-265
[2]   ROBUST VARIANCE-ESTIMATION FOR THE CASE-COHORT DESIGN [J].
BARLOW, WE .
BIOMETRICS, 1994, 50 (04) :1064-1072
[3]   Exposure stratified case-cohort designs [J].
Borgan, O ;
Langholz, B ;
Samuelsen, SO ;
Goldstein, L ;
Pogoda, J .
LIFETIME DATA ANALYSIS, 2000, 6 (01) :39-58
[4]   Vairiable selection for multivariate failure time data [J].
Cai, JW ;
Fan, JQ ;
Li, RZ ;
Zhou, HB .
BIOMETRIKA, 2005, 92 (02) :303-316
[5]   MODEL SELECTION FOR CORRELATED DATA WITH DIVERGING NUMBER OF PARAMETERS [J].
Cho, Hyunkeun ;
Qu, Annie .
STATISTICA SINICA, 2013, 23 (02) :901-927
[6]  
COX DR, 1972, J R STAT SOC B, V34, P187
[7]   SMOOTHING NOISY DATA WITH SPLINE FUNCTIONS [J].
WAHBA, G .
NUMERISCHE MATHEMATIK, 1975, 24 (05) :383-393
[8]   MASS HEALTH EXAMINATIONS IN BUSSELTON POPULATION, 1966 TO 1970 [J].
CULLEN, KJ .
MEDICAL JOURNAL OF AUSTRALIA, 1972, 2 (13) :714-&
[9]   Nonconcave penalized likelihood with a diverging number of parameters [J].
Fan, JQ ;
Peng, H .
ANNALS OF STATISTICS, 2004, 32 (03) :928-961
[10]  
Fan JQ, 2002, ANN STAT, V30, P74