Modified check loss for efficient estimation via model selection in quantile regression

被引:2
|
作者
Jung, Yoonsuh [1 ]
MacEachern, Steven N. [2 ]
Kim, Hang [3 ]
机构
[1] Korea Univ, Dept Stat, Seoul 02841, South Korea
[2] Ohio State Univ, Dept Stat, Columbus, OH 43210 USA
[3] Univ Cincinnati, Dept Math Sci, Cincinnati, OH USA
基金
新加坡国家研究基金会;
关键词
Check loss; cross-validation; quantile regression; quantile regression spline; quantile smoothing spline; NONPARAMETRIC REGRESSION; VARIABLE SELECTION; CROSS-VALIDATION;
D O I
10.1080/02664763.2020.1753023
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The check loss function is used to define quantile regression. In cross-validation, it is also employed as a validation function when the true distribution is unknown. However, our empirical study indicates that validation with the check loss often leads to overfitting the data. In this work, we suggest a modified or L2-adjusted check loss which rounds the sharp corner in the middle of check loss. This has the effect of guarding against overfitting to some extent. The adjustment is devised to shrink to zero as sample size grows. Through various simulation settings of linear and nonlinear regressions, the improvement due to modification of the check loss by quadratic adjustment is examined empirically.
引用
收藏
页码:866 / 886
页数:21
相关论文
共 50 条
  • [1] Efficient Estimation of an Additive Quantile Regression Model
    Cheng, Yebin
    de Gooijer, Jan G.
    Zerom, Dawit
    SCANDINAVIAN JOURNAL OF STATISTICS, 2011, 38 (01) : 46 - 62
  • [2] Efficient parameter estimation via modified Cholesky decomposition for quantile regression with longitudinal data
    Lv, Jing
    Guo, Chaohui
    COMPUTATIONAL STATISTICS, 2017, 32 (03) : 947 - 975
  • [3] Efficient parameter estimation via modified Cholesky decomposition for quantile regression with longitudinal data
    Jing Lv
    Chaohui Guo
    Computational Statistics, 2017, 32 : 947 - 975
  • [4] Efficient semiparametric estimation of a partially linear quantile regression model
    Lee, S
    ECONOMETRIC THEORY, 2003, 19 (01) : 1 - 31
  • [5] Efficient Estimation for Censored Quantile Regression
    Lee, Sze Ming
    Sit, Tony
    Xu, Gongjun
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2023, 118 (544) : 2762 - 2775
  • [6] Efficient information-based criteria for model selection in quantile regression
    Shin, Wooyoung
    Kim, Mingang
    Jung, Yoonsuh
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2022, 51 (01) : 245 - 281
  • [7] Efficient information-based criteria for model selection in quantile regression
    Wooyoung Shin
    Mingang Kim
    Yoonsuh Jung
    Journal of the Korean Statistical Society, 2022, 51 : 245 - 281
  • [8] Efficient estimation in the partially linear quantile regression model for longitudinal data
    Kim, Seonjin
    Cho, Hyunkeun Ryan
    ELECTRONIC JOURNAL OF STATISTICS, 2018, 12 (01): : 824 - 850
  • [9] Variable selection for nonparametric quantile regression via measurement error model
    Lai, Peng
    Yan, Xi
    Sun, Xin
    Pang, Haozhe
    Zhou, Yanqiu
    STATISTICAL PAPERS, 2022, 64 (6) : 2207 - 2224
  • [10] Model Selection via Bayesian Information Criterion for Quantile Regression Models
    Lee, Eun Ryung
    Noh, Hohsuk
    Park, Byeong U.
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2014, 109 (505) : 216 - 229