Role of Exposure Atmospheres on Particle Coarsening and Phase Transformation of LiAlO2

被引:12
作者
Heo, Su Jeong [1 ]
Hu, Boxun [1 ]
Uddin, Md Aman [1 ]
Aphale, Ashish [1 ]
Hilmi, Abdelkader [2 ]
Yuh, Chao-Yi [2 ]
Surendranath, Arun [2 ]
Singh, Prabhakar [1 ]
机构
[1] Univ Connecticut, Dept Mat Sci & Engn, Ctr Clean Energy Engn, Storrs, CT 06269 USA
[2] FuelCell Energy Inc, Danbury, CT 06813 USA
关键词
CARBONATE FUEL-CELL; LITHIUM ALUMINATE; CRYSTAL-STRUCTURE; ELECTROLYTE MATRIX; HIGH-PRESSURE; STABILITY; GAMMA-LIALO2; ADSORPTION; SYSTEM; HEAT;
D O I
10.1149/2.0181708jes
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The phase transformation and particle coarsening of lithium aluminate (alpha-LiAlO2) in electrolyte are the major causes of degradation affecting the performance and the lifetime of the molten carbonate fuel cell (MCFC). The stability of LiAlO2 has been studied in Li2CO3-Na2CO3 electrolyte under accelerated conditions in reducing and oxidizing gas atmospheres at temperatures of 650 and 750 for up to 500 hours. X-ray diffraction analyses show that the progressive transformation of alpha-LiAlO2 to gamma-LiAlO2 phase proceeds with increasing temperature in lower P-CO2 and lower P-O2 environments. Spherical LiAlO2 particles were transformed to coarsened pyramid-shape particles in 4% H-2-3% H2O-N-2 and 100% N-2 (similar to 10 ppm P-O2) atmospheres. Under CO2-rich atmospheres (4% H-2-30% CO2-N-2 and 70% air-30% CO2), both phase and particle size remained unchanged at 650 and 750 degrees C. Selected area electron diffraction (SAED) pattern analysis indicated that the large pyramidal shape particles (similar to 30 mu m) were gamma-LiAlO2 phase. Experimental observations and related simulation results pertaining to particle coarsening and phase transformation behavior of LiAlO2 are presented. (C) The Author(s) 2017. Published by ECS. All rights reserved.
引用
收藏
页码:H5086 / H5092
页数:7
相关论文
共 32 条
[1]   The stability of LiAlO2 powders and electrolyte matrices in molten carbonate fuel cell environment [J].
Antolini, Ermete .
CERAMICS INTERNATIONAL, 2013, 39 (04) :3463-3478
[2]   Development of alpha lithium aluminate matrix for molten carbonate fuel cell [J].
Batra, VS ;
Maudgal, S ;
Bali, S ;
Tewari, PK .
JOURNAL OF POWER SOURCES, 2002, 112 (01) :322-325
[3]   Molten carbonate fuel cell system fed with biofuels for electricity production [J].
Chiodo, V. ;
Zafarana, G. ;
Maisano, S. ;
Freni, S. ;
Galvagno, A. ;
Urbani, F. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (41) :18815-18821
[4]   Fabrication and characterization of γ-LiAlO2 matrices using an aqueous tape-casting process [J].
Cho, JY ;
Hyun, SH ;
Hong, SA .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2001, 84 (05) :937-940
[5]   Phase and Microstructural Stability of Electrolyte Matrix Materials for Molten Carbonate Fuel Cells [J].
Choi, H. -J. ;
Lee, J. -J. ;
Hyun, S. -H. ;
Lim, H. -C. .
FUEL CELLS, 2010, 10 (04) :613-618
[6]   Kinetics of the α→γ phase transformation in LiAlO2 under various atmospheres within the 1073-1173 K temperatures range [J].
Danek, V ;
Tarniowy, M ;
Suski, L .
JOURNAL OF MATERIALS SCIENCE, 2004, 39 (07) :2429-2435
[7]   Direct Fuel Cell DFC® Durability Progress [J].
Farooque, M. ;
Hilmi, A. ;
Venkataraman, R. ;
Yuh, C. .
FUEL CELL SEMINAR 2012, 2013, 51 (01) :27-35
[9]   Economic analysis of a combined heat and power molten carbonate fuel cell system [J].
Hengeveld, Derek W. ;
Revankar, Shripad T. .
JOURNAL OF POWER SOURCES, 2007, 165 (01) :300-306
[10]   Stability of lithium aluminate in reducing and oxidizing atmospheres at 700 °C [J].
Heo, Su Jeong ;
Hu, Boxun ;
Manthina, Venkata ;
Hilmi, Abdelkader ;
Yuh, Chao-Yi ;
Surendranath, Arun ;
Singh, Prabhakar .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (41) :18884-18892