Electronic structures, mechanical and thermodynamic properties of cubic alkaline-earth hexaborides from first principles calculations

被引:97
|
作者
Huang, Bo [1 ]
Duan, Yong-Hua [1 ,2 ]
Sun, Yong [1 ,2 ]
Peng, Ming-Jun [1 ]
Chen, Shuai [1 ]
机构
[1] Kunming Univ Sci & Technol, Sch Mat Sci & Engn, Kunming 650093, Peoples R China
[2] Minist Educ, Key Lab Adv Mat Rare & Precious & Nonferrous Met, Kunming 650093, Peoples R China
基金
中国国家自然科学基金;
关键词
First-principles calculations; Hexaborides; Phase stability; Elastic anisotropy; Thermodynamic properties; THERMAL-CONDUCTIVITY; ELASTIC PROPERTIES; SINGLE-CRYSTAL; CAB6; 1ST-PRINCIPLES; STABILITY; BORON; PRESSURE; PLASTICITY; TRANSPORT;
D O I
10.1016/j.jallcom.2015.02.128
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The electronic structures, mechanical and thermodynamic properties of alkaline-earth hexaborides MB6 (M = Ca, Sr or Ba) are calculated from first principles using density functional theory combined with the quasi-harmonic approximation. These three alkaline-earth hexaborides are semiconductors with a slightly increased trend for their band gaps as M orders from Ca to Ba. Their band gaps depend sensitively on the values of lattice constant a and internal parameter z. The polycrystalline values of the elastic constants and bulk, shear and Young's moduli are consistent with those determined experimentally. All alkaline- earth hexaborides have strongly anisotropic elastic properties in the order of CaB6 > SrB6 > BaB6. By using the phonon calculations, the thermodynamic properties are investigated. The obtained phonon dispersion relations for CaB6, SrB6, and BaB6 show similar features and there are LO/TO splitting lines in the range of 5-10 THz. Finally, the thermal conductivities of CaB6, SrB6 and BaB6 are evaluated via Clarke's model and Cahill's model. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:213 / 224
页数:12
相关论文
共 50 条
  • [1] First-principles calculations of electronic and thermodynamic properties of cubic structures of NdTe
    Mogulkoc, Y. (mogulkoc@eng.ankara.edu.tr), 1600, National Institute of Optoelectronics (16): : 5 - 6
  • [2] First-principles calculations of electronic and thermodynamic properties of cubic structures of NdTe
    Mogulkoc, Y.
    Ciftci, Y. O.
    Colakoglu, K.
    JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS, 2014, 16 (5-6): : 529 - 535
  • [3] Electronic structures, mechanical and thermodynamic properties of ThN from first-principles calculations
    Lu, Yong
    Li, Da-Fang
    Wang, Bao-Tian
    Li, Rong-Wu
    Zhang, Ping
    JOURNAL OF NUCLEAR MATERIALS, 2011, 408 (02) : 136 - 141
  • [4] Improvement of thermoelectric properties of alkaline-earth hexaborides
    Takeda, Masatoshi
    Terui, Manabu
    Takahashi, Norihito
    Ueda, Noriyoshi
    JOURNAL OF SOLID STATE CHEMISTRY, 2006, 179 (09) : 2823 - 2826
  • [5] Mechanical, thermodynamic and electronic properties of cubic SrHfO3: First-principles calculations
    Ilkhani, Mansoure
    Jafari, Homayoun
    Ahmadi, Aidin
    Faghihnasiri, Mandi
    SUPERLATTICES AND MICROSTRUCTURES, 2018, 123 : 382 - 393
  • [6] Mechanical, electronic, and thermodynamic properties of zirconium carbide from first-principles calculations
    Yang Xiao-Yong
    Lu Yong
    Zheng Fa-Wei
    Zhang Ping
    CHINESE PHYSICS B, 2015, 24 (11)
  • [7] Mechanical, electronic, and thermodynamic properties of zirconium carbide from first-principles calculations
    杨晓勇
    鲁勇
    郑法伟
    张平
    Chinese Physics B, 2015, (11) : 356 - 361
  • [8] Optical properties of alkaline-earth metal oxides from first principles
    Dadsetani, M.
    Beiranvand, R.
    SOLID STATE SCIENCES, 2009, 11 (12) : 2099 - 2105
  • [9] Phase Stability Analysis of Ternary Alkaline-Earth Hexaborides: Insights from DFT Calculations
    Schmidt, Kevin M.
    Koch, Robert J.
    Misture, Scott T.
    Graeve, Olivia A.
    Vasquez, Victor R.
    ACS APPLIED ELECTRONIC MATERIALS, 2019, 1 (01) : 105 - 112
  • [10] First-Principles Computed Electronic and Magnetic Properties of Zincblende Alkaline-Earth Pnictides
    Ozdogan, K.
    Galanakis, I.
    JOURNAL OF ADVANCED PHYSICS, 2012, 1 (01) : 69 - 77