On an equation characterizing multi-additive-quadratic mappings and its Hyers-Ulam stability

被引:26
作者
Bahyrycz, Anna [1 ]
Cieplinski, Krzysztof [2 ]
Olko, Jolanta [2 ]
机构
[1] Pedag Univ, Inst Math, PL-30084 Krakow, Poland
[2] AGH Univ Sci & Technol, Fac Appl Math, PL-30059 Krakow, Poland
关键词
Hyers-Ulam stability; Multi-additive-quadratic mapping; Fixed point method; FIXED-POINT;
D O I
10.1016/j.amc.2015.05.037
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we unify the system of functional equations defining a multi-additive-quadratic mapping to obtain a single equation. We also prove, using the fixed point method, the generalized Hyers-Ulam stability of this equation thus generalizing some known results. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:448 / 455
页数:8
相关论文
共 36 条
[1]  
[Anonymous], 1984, AEQUATIONES MATH
[2]  
[Anonymous], 2009, CAUCHYS EQUATION JEN
[3]  
Aoki T., 1950, J MATH SOC JAPAN, V2, P64, DOI [10.2969/jmsj/00210064, DOI 10.2969/JMSJ/00210064]
[4]   On approximate solutions of the generalized Volterra integral equation [J].
Bahyrycz, Anna ;
Brzdek, Janusz ;
Lesniak, Zbigniew .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2014, 20 :59-66
[5]  
Baker J. A., 1991, P AM MATH SOC, V112, P729
[6]   CLASSES OF TRANSFORMATIONS AND BORDERING TRANSFORMATIONS [J].
BOURGIN, DG .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1951, 57 (04) :223-237
[7]  
Brillouet-Belluot N., 2012, ABSTR APPL ANAL
[8]  
Brzdek J., 2013, ABSTR APPL AN
[9]   Fixed Point Theory and the Ulam Stability [J].
Brzdek, Janusz ;
Cadariu, Liviu ;
Cieplinski, Krzysztof .
JOURNAL OF FUNCTION SPACES, 2014, 2014
[10]   A note on stability of polynomial equations [J].
Brzdek, Janusz ;
Stevic, Stevo .
AEQUATIONES MATHEMATICAE, 2013, 85 (03) :519-527