Modification of Nitrate Ion Enables Stable Solid Electrolyte Interphase in Lithium Metal Batteries

被引:182
作者
Hou, Li-Peng [1 ]
Yao, Nan [1 ]
Xie, Jin [1 ]
Shi, Peng [1 ]
Sun, Shu-Yu [1 ]
Jin, Cheng-Bin [1 ]
Chen, Cheng-Meng [4 ]
Liu, Quan-Bing [5 ]
Li, Bo-Quan [2 ]
Zhang, Xue-Qiang [2 ,3 ]
Zhang, Qiang [1 ,3 ]
机构
[1] Tsinghua Univ, Dept Chem Engn, Beijing Key Lab Green Chem React Engn & Technol, Beijing 100084, Peoples R China
[2] Beijing Inst Technol, Adv Res Inst Multidisciplinary Sci, Beijing 100081, Peoples R China
[3] Tsinghua Univ, Shanxi Res Inst Clean Energy, Taiyuan 030032, Peoples R China
[4] Chinese Acad Sci, Inst Coal Chem, Key Lab Carbon Mat, Taiyuan 030001, Peoples R China
[5] Guangdong Univ Technol, Sch Chem Engn & Light Ind, Guangzhou 510006, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Isosorbide Dinitrate; Lithium Metal Anodes; Lithium-Sulfur Batteries; Molecular Modification; Solid Electrolyte Interphase; HIGH-ENERGY-DENSITY; SULFUR; SURFACE; ANODE; DESIGN;
D O I
10.1002/anie.202201406
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The lifespan of high-energy-density lithium metal batteries (LMBs) is hindered by heterogeneous solid electrolyte interphase (SEI). The rational design of electrolytes is strongly considered to obtain uniform SEI in working batteries. Herein, a modification of nitrate ion (NO3-) is proposed and validated to improve the homogeneity of the SEI in practical LMBs. NO3- is connected to an ether-based moiety to form isosorbide dinitrate (ISDN) to break the resonance structure of NO3- and improve the reducibility. The decomposition of non-resonant -NO3 in ISDN enriches SEI with abundant LiNxOy and induces uniform lithium deposition. Lithium-sulfur batteries with ISDN additives deliver a capacity retention of 83.7 % for 100 cycles compared with rapid decay with LiNO3 after 55 cycles. Moreover, lithium-sulfur pouch cells with ISDN additives provide a specific energy of 319 Whkg(-1) and undergo 20 cycles. This work provides a realistic reference in designing additives to modify the SET for stabilizing LMBs.
引用
收藏
页数:6
相关论文
共 71 条
[1]   A New Class of Ionically Conducting Fluorinated Ether Electrolytes with High Electrochemical Stability [J].
Amanchukwu, Chibueze, V ;
Yu, Zhiao ;
Kong, Xian ;
Qin, Jian ;
Cui, Yi ;
Bao, Zhenan .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (16) :7393-7403
[2]  
[Anonymous], 2020, ANGEW CHEM, V132, P3278
[3]  
[Anonymous], 2020, ANGEW CHEM, V132, P15045
[4]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[5]   On the Surface Chemical Aspects of Very High Energy Density, Rechargeable Li-Sulfur Batteries [J].
Aurbach, Doron ;
Pollak, Elad ;
Elazari, Ran ;
Salitra, Gregory ;
Kelley, C. Scordilis ;
Affinito, John .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2009, 156 (08) :A694-A702
[6]   Anode Material Options Toward 500 Wh kg-1 Lithium-Sulfur Batteries [J].
Bi, Chen-Xi ;
Zhao, Meng ;
Hou, Li-Peng ;
Chen, Zi-Xian ;
Zhang, Xue-Qiang ;
Li, Bo-Quan ;
Yuan, Hong ;
Huang, Jia-Qi .
ADVANCED SCIENCE, 2022, 9 (02)
[7]  
Bruce PG, 2012, NAT MATER, V11, P19, DOI [10.1038/NMAT3191, 10.1038/nmat3191]
[8]   Reactivity at the Lithium-Metal Anode Surface of Lithium-Sulfur Batteries [J].
Camacho-Forero, Luis E. ;
Smith, Taylor W. ;
Bertolini, Samuel ;
Balbuena, Perla B. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (48) :26828-26839
[9]   Bridging the academic and industrial metrics for next-generation practical batteries [J].
Cao, Yuliang ;
Li, Matthew ;
Lu, Jun ;
Liu, Jun ;
Amine, Khalil .
NATURE NANOTECHNOLOGY, 2019, 14 (03) :200-207
[10]   Ion-solvent chemistry in lithium battery electrolytes: From mono-solvent to multi-solvent complexes [J].
Chen, Xiang ;
Yao, Nan ;
Zeng, Bo-Shen ;
Zhang, Qiang .
FUNDAMENTAL RESEARCH, 2021, 1 (04) :393-398