Existence results for semilinear elliptical hemivariational inequalities

被引:7
作者
Barletta, Giuseppina [1 ]
机构
[1] Univ Reggio Calabria, Fac Architettura, Dipartimento Patrimonio Architetton & Urbanist, I-89124 Reggio Di Calabria, Italy
关键词
hemivariational inequalities; critical point; constraint;
D O I
10.1016/j.na.2007.01.068
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We are interested in studying the existence of solutions to all elliptical hemivariational inequality, depending on a real parameter lambda. The main tool in the proof of our results is a critical point theorem recently established. We obtain the existence of solution through a direct method, both with a changing sign nonlinearity of the kind p(x) f(xi) and in the classical one P(x, xi) too. (C) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2417 / 2430
页数:14
相关论文
共 13 条
[1]  
Adams A, 2003, SOBOLEV SPACES
[2]  
BONANNO G, 2001, NONCONVEX OPTIM APPL, V58, P25
[3]  
Brezis H., 1983, TH ORIE APPL
[4]  
Clarke F.H., 1990, CLASSICS APPL MATH, V5
[5]  
Girardi M, 2001, Z ANAL ANWEND, V20, P845
[6]   Generalized quasi-variational hemi-variational inequalities [J].
Liu, ZH .
APPLIED MATHEMATICS LETTERS, 2004, 17 (06) :741-745
[7]  
Livrea R, 2004, ADV DIFFERENTIAL EQU, V9, P961
[8]   Generalized variational and quasi-variational inequalities with discontinuous operators [J].
Lunsford, ML .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1997, 214 (01) :245-263
[9]   On some elliptic hemivariational and variational-hemivaritional inequalities [J].
Marano, SA ;
Papageorgiou, NS .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 62 (04) :757-774
[10]  
Matzeu M, 2002, ADV NONLINEAR STUD, V2, P1