Realization of modular Galois representations in the Jacobians of modular curves

被引:0
作者
Tian, Peng [1 ]
机构
[1] East China Univ Sci & Technol, Dept Math, Shanghai 200237, Peoples R China
关键词
Modular forms; Modular Galois representations; Jacobians of modular curves; FORMS;
D O I
10.1007/s11139-021-00546-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In Tian (Acta Arith. 164:399-412, 2014), the author improved the algorithm proposed by Edixhoven and Couveignes for computing mod l Galois representations associated to eigenforms f for the cases that l >= k - 1 and f has level one, where k is the weight of f. In this paper, we generalize the results of Tian (Acta Arith. 164:399-412, 2014) and present a method to find the Jacobians of modular curves of minimal dimensions to realize the modular Galois representations. Our method works for the cases that l >= 5 may be any prime without the assumption l >= - 1 and the eigenforms f have arbitrary levels prime to l. Moreover, if k > 2, we give criteria for realizing the mod l Galois representations in the Jacobians J(0) of X-0.
引用
收藏
页码:389 / 405
页数:17
相关论文
共 10 条
[1]  
[Anonymous], 2010, THESIS U LEIDEN
[2]   ON MODULO-L GALOIS REPRESENTATIONS ATTACHED TO MODULAR-FORMS [J].
CARAYOL, H .
DUKE MATHEMATICAL JOURNAL, 1989, 59 (03) :785-801
[3]  
Deligne P., 1969, Seminaire Bourbaki, Expose, V355, P139
[4]   THE WEIGHT IN SERRES CONJECTURES ON MODULAR-FORMS [J].
EDIXHOVEN, B .
INVENTIONES MATHEMATICAE, 1992, 109 (03) :563-594
[5]  
Edixhoven S. J., 2011, Computational Aspects of Modular Forms and Galois Representations, V176
[6]   A TAMENESS CRITERION FOR GALOIS REPRESENTATIONS ASSOCIATED TO MODULAR-FORMS (MOD P) [J].
GROSS, BH .
DUKE MATHEMATICAL JOURNAL, 1990, 61 (02) :445-517
[7]  
Ribet K., 1977, LECT NOTES MATH, V601, P18, DOI DOI 10.1007/BFB0063943
[8]  
Ribet K. A., 2001, IAS PARK CITY MATH S, P143
[9]  
Stein W.A., 2007, MODULAR FORMS COMPUT, V79
[10]   Computations of Galois representations associated to modular forms of level one [J].
Tian, Peng .
ACTA ARITHMETICA, 2014, 164 (04) :399-411