AlGaN/GaN/3C-SiC on diamond HEMTs with thick nitride layers prepared by bonding-first process

被引:9
作者
Kagawa, Ryo [1 ]
Kawamura, Keisuke [2 ]
Sakaida, Yoshiki [2 ]
Ouchi, Sumito [2 ]
Uratani, Hiroki [2 ]
Shimizu, Yasuo [3 ]
Ohno, Yutaka [4 ]
Nagai, Yasuyoshi [5 ]
Liang, Jianbo [1 ]
Shigekawa, Naoteru [1 ]
机构
[1] Osaka City Univ, Dept Elect Informat Syst, Sugimoto 3-3-138, Sumiyoshi, Osaka 5588585, Japan
[2] Air Water Inc, SiC Div, 2290-1 Takibe, Toyoshina Azumino, Nagano 3998204, Japan
[3] Natl Inst Mat Sci NIMS, 1-2-1 Sengen, Tsukuba, Ibaraki 3050047, Japan
[4] Tohoku Univ, Inst Mat Res IMR, 2-1-1 Katahira, Sendai, Miyagi 9808577, Japan
[5] Tohoku Univ, Inst Mat Res IMR, 2145-2 Narita, Oarai, Ibaraki 3111313, Japan
基金
日本科学技术振兴机构;
关键词
GaN-on-diamond; high electron mobility transistor; 3C-SiC; thermal resistance; surface activated bonding; GAN HEMTS; ENERGY-GAP; TEMPERATURE; TECHNOLOGY; OPERATION;
D O I
10.35848/1882-0786/ac5ba7
中图分类号
O59 [应用物理学];
学科分类号
摘要
We fabricate AlGaN/GaN high electron mobility transistors (HEMTs) on diamond substrates by transferring 8 mu m heterostructures grown on 3C-SiC/Si templates and subsequently applying the conventional device process steps. No exfoliation of 3C-SiC/diamond bonding interfaces is observed during 800 degrees C annealing, the essential step for forming ohmic contacts on nitrides. The thermal resistance of HEMTs on diamond is 35% of that of HEMTs on Si, which is assumed to be the origin of smaller negative drain conductance in on-diamond HEMTs. The results imply that the bonding-first process is applicable for fabricating low-thermal-resistance HEMTs with thick nitride layers.
引用
收藏
页数:5
相关论文
共 30 条
[1]   Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures [J].
Ambacher, O ;
Smart, J ;
Shealy, JR ;
Weimann, NG ;
Chu, K ;
Murphy, M ;
Schaff, WJ ;
Eastman, LF ;
Dimitrov, R ;
Wittmer, L ;
Stutzmann, M ;
Rieger, W ;
Hilsenbeck, J .
JOURNAL OF APPLIED PHYSICS, 1999, 85 (06) :3222-3233
[2]   Three-dimensional finite-element thermal simulation of GaN-based HEMTs [J].
Bertoluzza, F. ;
Delmonte, N. ;
Menozzi, R. .
MICROELECTRONICS RELIABILITY, 2009, 49 (05) :468-473
[3]   Elimination of the Low Resistivity of Si Substrates in GaN HEMTs by Introducing a SiC Intermediate and a Thick Nitride Layer [J].
Bose, Arijit ;
Biswas, Debaleen ;
Hishiki, Shigeomi ;
Ouchi, Sumito ;
Kitahara, Koichi ;
Kawamura, Keisuke ;
Wakejima, Akio .
IEEE ELECTRON DEVICE LETTERS, 2020, 41 (10) :1480-1483
[4]   Low-Temperature Bonded GaN-on-Diamond HEMTs With 11 W/mm Output Power at 10 GHz [J].
Chao, Pane-Chane ;
Chu, Kenneth ;
Creamer, Carlton ;
Diaz, Jose ;
Yurovchak, Tom ;
Shur, Michael ;
Kallaher, Ray ;
McGray, Craig ;
Via, Glen David ;
Blevins, John D. .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2015, 62 (11) :3658-3664
[5]   GaN-on-Si Power Technology: Devices and Applications [J].
Chen, Kevin J. ;
Haeberlen, Oliver ;
Lidow, Alex ;
Tsai, Chun Lin ;
Ueda, Tetsuzo ;
Uemoto, Yasuhiro ;
Wu, Yifeng .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2017, 64 (03) :779-795
[6]   Interfacial Thermal Conductance across Room-Temperature-Bonded GaN/Diamond Interfaces for GaN-on-Diamond Devices [J].
Cheng, Zhe ;
Mu, Fengwen ;
Yates, Luke ;
Suga, Tadatomo ;
Graham, Samuel .
ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (07) :8376-8384
[7]  
Chu KK, 2013, IEEE COMP SEMICON
[8]   Raman scattering as a characterization tool for epitaxial GaN thin films grown on sapphire by turbo disk metal-organic chemical vapor deposition [J].
Feng, ZC ;
Schurman, M ;
Stall, RA ;
Pavlosky, M ;
Whitley, A .
APPLIED OPTICS, 1997, 36 (13) :2917-2922
[9]   Formation and characterization of 4-inch GaN-on-diamond substrates [J].
Francis, D. ;
Faili, F. ;
Babic, D. ;
Ejeckam, F. ;
Nurmikko, A. ;
Maris, H. .
DIAMOND AND RELATED MATERIALS, 2010, 19 (2-3) :229-233
[10]   Self-heating in high-power AlGaN-GaN HFET's [J].
Gaska, R ;
Osinsky, A ;
Yang, JW ;
Shur, MS .
IEEE ELECTRON DEVICE LETTERS, 1998, 19 (03) :89-91