Explainable artificial intelligence (XAI) detects wildfire occurrence in the Mediterranean countries of Southern Europe

被引:48
作者
Cilli, Roberto [1 ]
Elia, Mario [2 ]
D'Este, Marina [2 ]
Giannico, Vincenzo [2 ]
Amoroso, Nicola [3 ,4 ]
Lombardi, Angela [1 ,4 ]
Pantaleo, Ester [1 ,4 ]
Monaco, Alfonso [1 ,4 ]
Sanesi, Giovanni [2 ]
Tangaro, Sabina [4 ,5 ]
Bellotti, Roberto [1 ,4 ]
Lafortezza, Raffaele [2 ,6 ]
机构
[1] Univ Bari Aldo Moro, Dipartimento Interateneo Fis M Merlin, Bari, Italy
[2] Univ Bari Aldo Moro, Dipartimento Sci Agroambientali & Terr DiSSAT, Bari, Italy
[3] Univ Bari Aldo Moro, Dipartimento Farm Sci Farmaco, Bari, Italy
[4] Ist Nazl Fis Nucl, Sez Bari, Bari, Italy
[5] Univ Bari Aldo Moro, Dipartimento Sci Suolo Pianta & Alimenti, Bari, Italy
[6] Univ Hong Kong, Dept Geog, Pokfulam, Centennial Campus,Pokfulam Rd, Hong Kong, Peoples R China
关键词
MACHINE-LEARNING ALGORITHMS; SPATIAL-PATTERNS; FIRE OCCURRENCE; IGNITION; REGRESSION; DRIVERS; LANDSCAPE; FREQUENCY; FORESTS; RISK;
D O I
10.1038/s41598-022-20347-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The impacts and threats posed by wildfires are dramatically increasing due to climate change. In recent years, the wildfire community has attempted to estimate wildfire occurrence with machine learning models. However, to fully exploit the potential of these models, it is of paramount importance to make their predictions interpretable and intelligible. This study is a first attempt to provide an eXplainable artificial intelligence (XAI) framework for estimating wildfire occurrence using a Random Forest model with Shapley values for interpretation. Our findings accurately detected regions with a high presence of wildfires (area under the curve 81.3%) and outlined the drivers empowering occurrence, such as the Fire Weather Index and Normalized Difference Vegetation Index. Furthermore, our analysis suggests the presence of anomalous hotspots. In contexts where human and natural spheres constantly intermingle and interact, the XAI framework, suitably integrated into decision support systems, could support forest managers to prevent and mitigate future wildfire disasters and develop strategies for effective fire management, response, recovery, and resilience.
引用
收藏
页数:11
相关论文
共 54 条
[1]   Permutation importance: a corrected feature importance measure [J].
Altmann, Andre ;
Tolosi, Laura ;
Sander, Oliver ;
Lengauer, Thomas .
BIOINFORMATICS, 2010, 26 (10) :1340-1347
[2]   A Roadmap towards Breast Cancer Therapies Supported by Explainable Artificial Intelligence [J].
Amoroso, Nicola ;
Pomarico, Domenico ;
Fanizzi, Annarita ;
Didonna, Vittorio ;
Giotta, Francesco ;
La Forgia, Daniele ;
Latorre, Agnese ;
Monaco, Alfonso ;
Pantaleo, Ester ;
Petruzzellis, Nicole ;
Tamborra, Pasquale ;
Zito, Alfredo ;
Lorusso, Vito ;
Bellotti, Roberto ;
Massafra, Raffaella .
APPLIED SCIENCES-BASEL, 2021, 11 (11)
[3]   Modeling human-caused forest fire ignition for assessing forest fire danger in Austria [J].
Arndt, Natalie ;
Vacik, Harald ;
Koch, Valerie ;
Arpaci, Alexander ;
Gossow, Hartnut .
IFOREST-BIOGEOSCIENCES AND FORESTRY, 2013, 6 :315-325
[4]  
Ascoli D., 2021, ANN SILVICULT RES, V46
[5]   Fifteen years of changes in fire ignition frequency in Sardinia (Italy): A rich-get-richer process [J].
Bajocco, Sofia ;
Ferrara, Carlotta ;
Guglietta, Daniela ;
Ricotta, Carlo .
ECOLOGICAL INDICATORS, 2019, 104 :543-548
[6]   Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI [J].
Barredo Arrieta, Alejandro ;
Diaz-Rodriguez, Natalia ;
Del Ser, Javier ;
Bennetot, Adrien ;
Tabik, Siham ;
Barbado, Alberto ;
Garcia, Salvador ;
Gil-Lopez, Sergio ;
Molina, Daniel ;
Benjamins, Richard ;
Chatila, Raja ;
Herrera, Francisco .
INFORMATION FUSION, 2020, 58 :82-115
[7]   Changes of forest cover and disturbance regimes in the mountain forests of the Alps [J].
Bebi, P. ;
Seidl, R. ;
Motta, R. ;
Fuhr, M. ;
Firm, D. ;
Krumm, F. ;
Conedera, M. ;
Ginzler, C. ;
Wohlgemuth, T. ;
Kulakowski, D. .
FOREST ECOLOGY AND MANAGEMENT, 2017, 388 :43-56
[8]   R Packages for Analyzing Spatial Data: A Comparative Case Study with Areal Data [J].
Bivand, Roger .
GEOGRAPHICAL ANALYSIS, 2022, 54 (03) :488-518
[9]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[10]  
Celik E., 2015, vita: Variable Importance Testing Approaches [R package version 1.0.0]