Two polynomial division inequalities in LP

被引:1
作者
Goetgheluck, P [1 ]
机构
[1] Univ Paris Sud, F-91405 Orsay, France
关键词
polynomial inequalities; schur inequality; explicit constants;
D O I
10.1155/S1025583498000186
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is a first attempt to give numerical Values for constants C-p and C-p' in classical estimates //P// less than or equal to C(p)n//xP// and //P// less than or equal to C-p'n(2)//(1 - x)P// where P is an algebraic polynomial of degree at most n (n > 0) and //.// denotes the p-metric on [-1, 1]. The basic tools are Markov and Bernstein inequalities.
引用
收藏
页码:285 / 296
页数:12
相关论文
共 6 条
[1]  
BARI NK, 1954, IZV AKAD NAUK SSSR M, V18, P159
[2]   BERNSTEIN INEQUALITY IN LP WEIGHT SPACES [J].
GOETGHELUCK, P .
JOURNAL OF APPROXIMATION THEORY, 1980, 28 (04) :359-365
[3]   POLYNOMIAL INEQUALITIES AND MARKOVS INEQUALITY IN WEIGHTED LP-SPACES [J].
GOETGHELUCK, P .
ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1979, 33 (3-4) :325-331
[4]  
KHALILOVA BA, 1974, IZV AKAD NAUK AZERBA, V2, P46
[5]  
Natanson I. P., 1964, Constructive Function Theory, VI
[6]   On the maximum of absolute values for polynomials in a given interval [J].
Schur, I .
MATHEMATISCHE ZEITSCHRIFT, 1919, 4 :271-287