Plasmonic-induced transparency (PIT) in the metal-insulator-metal plasmonic waveguide with two side-coupled rectangular ring disk structures is numerically investigated. The PIT resonance occurs as a consequence of the destructive interference between the two structures. It is found that the transmittance can be easily adjusted by changing the parameters of the structure and coupling distance between the structure and waveguide. By optimizing the parameters, the transmittance of the structure can up to 75% in our discussion. These results may have important applications for designing integrated devices such as narrow-frequency optical filters, novel sensors and high-speed switches.