K-edge connected polyhedra on series-parallel graphs

被引:27
作者
Biha, MD [1 ]
Mahjoub, AR [1 ]
机构
[1] UNIV BRETAGNE OCCIDENTALE,DEPT INFORMAT,LAB SPO,F-29285 BREST,FRANCE
关键词
k-edge connected subgraphs; polytopes; series-parallel graphs;
D O I
10.1016/0167-6377(96)00015-6
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We give a complete description of the k-edge connected spanning subgraph polytope (for all k) on series-parallel graphs.
引用
收藏
页码:71 / 78
页数:8
相关论文
共 27 条
[1]  
BAIOU M, IN PRESS SIAM J DISC
[2]   On two-connected subgraph polytopes [J].
Barahona, F ;
Mahjoub, AR .
DISCRETE MATHEMATICS, 1995, 147 (1-3) :19-34
[3]   SEPARATING FROM THE DOMINANT OF THE SPANNING TREE POLYTOPE [J].
BARAHONA, F .
OPERATIONS RESEARCH LETTERS, 1992, 12 (04) :201-203
[4]   ON THE STRUCTURE OF MINIMUM-WEIGHT K-CONNECTED SPANNING NETWORKS [J].
BIENSTOCK, D ;
BRICKELL, EF ;
MONMA, CL .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 1990, 3 (03) :320-329
[5]   THE K-EDGE-CONNECTED SPANNING SUBGRAPH POLYHEDRON [J].
CHOPRA, S .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 1994, 7 (02) :245-259
[6]  
CHOPRA S, COMMUNICATION
[7]  
Christofides N., 1981, Operational Research '81. Proceedings of the Ninth IFORS International Conference, P705
[8]   THE TRAVELING SALESMAN PROBLEM ON A GRAPH AND SOME RELATED INTEGER POLYHEDRA [J].
CORNUEJOLS, G ;
FONLUPT, J ;
NADDEF, D .
MATHEMATICAL PROGRAMMING, 1985, 33 (01) :1-27
[9]  
COULLARD R, CC9123 PURD U SCH IN
[10]  
COULLARD R, 9128 PURD U SCH IND