Quasi-orthogonal decompositions of structured frames

被引:102
作者
Fornasier, M [1 ]
机构
[1] Univ Vienna, Dept Math, NuHAG, A-1090 Vienna, Austria
关键词
decomposition methods; frames; Gabor analysis; iterative algorithms; Wiener amalgams;
D O I
10.1016/j.jmaa.2003.09.041
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A decomposition of a Hilbert space H into a quasi-orthogonal family of closed subspaces is introduced. We shall investigate conditions in order to derive bounded families of corresponding quasi-projectors or resolutions of the identity operator. Given a local family of atoms, or generalized stable basis, for each subspace; we show that the union of the local atoms can generate a global frame for the Hilbert space. Corresponding duals can be calculated in a flexible way by means of systems of quasi-projectors. An application to Gabor frames is presented as example of the use of this technique, for calculation of duals and explicit estimates of lattice constants. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:180 / 199
页数:20
相关论文
共 28 条
[11]  
Feichtinger H. G., 1998, GABOR ANAL ALGORITHM
[12]   BANACH-SPACES OF DISTRIBUTIONS DEFINED BY DECOMPOSITION METHODS .1. [J].
FEICHTINGER, HG ;
GROBNER, P .
MATHEMATISCHE NACHRICHTEN, 1985, 123 :97-120
[13]   ON A NEW SEGAL ALGEBRA [J].
FEICHTINGER, HG .
MONATSHEFTE FUR MATHEMATIK, 1981, 92 (04) :269-289
[14]   ATOMIC CHARACTERIZATIONS OF MODULATION SPACES THROUGH GABOR-TYPE REPRESENTATIONS [J].
FEICHTINGER, HG .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1989, 19 (01) :113-125
[15]   BANACH-SPACES OF DISTRIBUTIONS DEFINED BY DECOMPOSITION METHODS .2. [J].
FEICHTINGER, HG .
MATHEMATISCHE NACHRICHTEN, 1987, 132 :207-237
[16]   ITERATIVE RECONSTRUCTION OF MULTIVARIATE BAND-LIMITED FUNCTIONS FROM IRREGULAR SAMPLING VALUES [J].
FEICHTINGER, HG ;
GROCHENIG, K .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1992, 23 (01) :244-261
[17]  
FEICHTINGER HG, 1988, ROCKY MOUNTAIN J MAT, V19, P52
[18]  
FORNASIER M, 2002, 02EI32 DFPD U PAD DE
[19]  
FORNASIER M, 2003, P INT C CONSTR FUNCT, P275
[20]  
FORNASIER M, 2002, THESIS U PADOVA