Subspace controllability of spin-1/2 chains with symmetries

被引:8
作者
Wang, Xiaoting [1 ,2 ]
Burgarth, Daniel [3 ]
Schirmer, S. [4 ]
机构
[1] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA
[2] Louisiana State Univ, Hearne Inst Theoret Phys, Baton Rouge, LA 70803 USA
[3] Aberystwyth Univ, Inst Math Phys & Comp Sci, Aberystwyth SY23 3BZ, Dyfed, Wales
[4] Swansea Univ, Dept Phys, Coll Sci, Swansea SA2 8PP, W Glam, Wales
基金
英国工程与自然科学研究理事会;
关键词
LIE-ALGEBRA; DECOMPOSITION; SYSTEMS;
D O I
10.1103/PhysRevA.94.052319
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We develop a technique to prove simultaneous subspace controllability on multiple invariant subspaces, which specifically enables us study the controllability properties of spin systems that are not amenable to standard controllability arguments based on energy level connectivity graphs or simple induction arguments on the length of the chain. The technique is applied to establish simultaneous subspace controllability for Heisenberg spin chains subject to limited local controls. This model is theoretically important and the controllability result shows that a single control can be sufficient for complete controllability of an exponentially large subspace and universal quantum computation in the exponentially large subspace. The controllability results are extended to prove subspace controllability in the presence of control field leakage and discuss minimal control resources required to achieve controllability over the entire spin chain space.
引用
收藏
页数:11
相关论文
共 19 条
  • [11] Nielsen M A., 2000, Quantum Computation and Quantum Information
  • [12] Uncontrollable quantum systems: A classification scheme based on Lie subalgebras
    Polack, Thomas
    Suchowski, Haim
    Tannor, David J.
    [J]. PHYSICAL REVIEW A, 2009, 79 (05):
  • [13] Sachdev S, 1999, PHYS WORLD, V12, P33
  • [14] Silva-Leite F., 1988, MATH CONTROL SIGNAL, V1, P31
  • [15] Quantum simulation of antiferromagnetic spin chains in an optical lattice
    Simon, Jonathan
    Bakr, Waseem S.
    Ma, Ruichao
    Tai, M. Eric
    Preiss, Philipp M.
    Greiner, Markus
    [J]. NATURE, 2011, 472 (7343) : 307 - U200
  • [16] Wavefunction controllability for finite-dimensional bilinear quantum systems
    Turinici, G
    Rabitz, H
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (10): : 2565 - 2576
  • [17] Symmetry and Subspace Controllability for Spin Networks With a Single-Node Control
    Wang, Xiaoting
    Pemberton-Ross, Peter
    Schirmer, Sophie G.
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2012, 57 (08) : 1945 - 1956
  • [18] Robust entanglement in antiferromagnetic Heisenberg chains by single-spin optimal control
    Wang, Xiaoting
    Bayat, Abolfazl
    Schirmer, S. G.
    Bose, Sougato
    [J]. PHYSICAL REVIEW A, 2010, 81 (03):
  • [19] Symmetry principles in quantum systems theory
    Zeier, Robert
    Schulte-Herbrueggen, Thomas
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2011, 52 (11)