Subspace controllability of spin-1/2 chains with symmetries

被引:8
作者
Wang, Xiaoting [1 ,2 ]
Burgarth, Daniel [3 ]
Schirmer, S. [4 ]
机构
[1] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA
[2] Louisiana State Univ, Hearne Inst Theoret Phys, Baton Rouge, LA 70803 USA
[3] Aberystwyth Univ, Inst Math Phys & Comp Sci, Aberystwyth SY23 3BZ, Dyfed, Wales
[4] Swansea Univ, Dept Phys, Coll Sci, Swansea SA2 8PP, W Glam, Wales
基金
英国工程与自然科学研究理事会;
关键词
LIE-ALGEBRA; DECOMPOSITION; SYSTEMS;
D O I
10.1103/PhysRevA.94.052319
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We develop a technique to prove simultaneous subspace controllability on multiple invariant subspaces, which specifically enables us study the controllability properties of spin systems that are not amenable to standard controllability arguments based on energy level connectivity graphs or simple induction arguments on the length of the chain. The technique is applied to establish simultaneous subspace controllability for Heisenberg spin chains subject to limited local controls. This model is theoretically important and the controllability result shows that a single control can be sufficient for complete controllability of an exponentially large subspace and universal quantum computation in the exponentially large subspace. The controllability results are extended to prove subspace controllability in the presence of control field leakage and discuss minimal control resources required to achieve controllability over the entire spin chain space.
引用
收藏
页数:11
相关论文
共 19 条
  • [1] The Lie algebra structure and controllability of spin systems
    Albertini, F
    D'Alessandro, D
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2002, 350 (1-3) : 213 - 235
  • [2] Controllability of quantum mechanical systems by root space decomposition of su(N)
    Altafini, C
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2002, 43 (05) : 2051 - 2062
  • [3] Spin liquids in frustrated magnets
    Balents, Leon
    [J]. NATURE, 2010, 464 (7286) : 199 - 208
  • [4] SPIN-GLASSES - EXPERIMENTAL FACTS, THEORETICAL CONCEPTS, AND OPEN QUESTIONS
    BINDER, K
    YOUNG, AP
    [J]. REVIEWS OF MODERN PHYSICS, 1986, 58 (04) : 801 - 976
  • [5] Scalable quantum computation via local control of only two qubits
    Burgarth, Daniel
    Maruyama, Koji
    Murphy, Michael
    Montangero, Simone
    Calarco, Tommaso
    Nori, Franco
    Plenio, Martin B.
    [J]. PHYSICAL REVIEW A, 2010, 81 (04)
  • [6] Local controllability of quantum networks
    Burgarth, Daniel
    Bose, Sougato
    Bruder, Christoph
    Giovannetti, Vittorio
    [J]. PHYSICAL REVIEW A, 2009, 79 (06):
  • [7] Constructive Decomposition of the Controllability Lie Algebra for Quantum Systems
    D'Alessandro, Domenico
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2010, 55 (06) : 1416 - 1421
  • [8] DAlessandro D., 2008, Introduction to Quantum Control and Dynamics
  • [9] CONTROL-SYSTEMS ON SEMISIMPLE LIE-GROUPS AND THEIR HOMOGENEOUS SPACES
    JURDJEVIC, V
    KUPKA, I
    [J]. ANNALES DE L INSTITUT FOURIER, 1981, 31 (04) : 151 - 179
  • [10] Jurdjevic V., 1997, Geometric Control Theory