The bilinear Hilbert transform in UMD spaces

被引:8
作者
Amenta, Alex [1 ]
Uraltsev, Gennady [2 ]
机构
[1] Univ Bonn, Math Inst, Bonn, Germany
[2] Cornell Univ, Dept Math, White Hall, Ithaca, NY 14853 USA
关键词
VECTOR-VALUED INEQUALITIES; EXTRAPOLATION; CONVERGENCE; DOMINATION; OPERATORS; THEOREM;
D O I
10.1007/s00208-020-02052-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove L-p-bounds for the bilinear Hilbert transform acting on functions valued in intermediate UMD spaces. Such bounds were previously unknown for UMD spaces that are not Banach lattices. Our proof relies on bounds on embeddings from Bochner spaces L-p(R; X) into outer Lebesgue spaces on the time-frequency-scale space R-+(3).
引用
收藏
页码:1129 / 1221
页数:93
相关论文
共 48 条
[1]  
Amenta A., 2020, ARXIV200302742
[2]  
Amenta A, 2020, J FOURIER ANAL APPL, V26, DOI 10.1007/s00041-020-09768-0
[3]  
[Anonymous], ARXIV180203338
[4]  
Benea C., 2018, ARXIV170705484
[5]   Quasi-Banach valued inequalities via the helicoidal method [J].
Benea, Cristina ;
Muscalu, Camil .
JOURNAL OF FUNCTIONAL ANALYSIS, 2017, 273 (04) :1295-1353
[6]   MULTIPLE VECTOR-VALUED INEQUALITIES VIA THE HELICOIDAL METHOD [J].
Benea, Cristina ;
Muscalu, Camil .
ANALYSIS & PDE, 2016, 9 (08) :1931-1988
[7]  
Bergh J., 1976, Interpolation spaces. An introduction
[8]   SOME REMARKS ON BANACH-SPACES IN WHICH MARTINGALE DIFFERENCE-SEQUENCES ARE UNCONDITIONAL [J].
BOURGAIN, J .
ARKIV FOR MATEMATIK, 1983, 21 (02) :163-168
[9]  
Burkholder D.L., 1983, WADSWORTH MATH SER, P270
[10]  
Burkholder DL, 2001, HANDBOOK OF THE GEOMETRY OF BANACH SPACES, VOL 1, P233, DOI 10.1016/S1874-5849(01)80008-5