On the minimum length of some linear codes of dimension 5

被引:10
作者
Cheon, EJ [1 ]
Kato, T
Kim, SJ
机构
[1] Gyeongsang Natl Univ, Dept Math, Jinju 660701, South Korea
[2] Yamaguchi Univ, Dept Math Sci, Yamaguchi 7538512, Japan
[3] Gyeongsang Natl Univ, RINS, Jinju 660701, South Korea
基金
新加坡国家研究基金会;
关键词
Griesmer bound; linear code; projective space;
D O I
10.1007/s10623-004-4034-9
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
IlIn this paper, we shall prove that the minimum length n(q) (5, d) is equal to g(q) (5, d) + 1 for q(4) - 2q(2) - 2(q) + 1 <= d <= q(4) - 2q(2) - q and 2q(4) - 2q(3) - q(2)- 2(q) + 1 <= d <= 2q(4) - 2q(3) - q(2) - q, where g(q) (5, d) means the Griesmer bound Sigma(i=0)(4) [d/q(i)].
引用
收藏
页码:421 / 434
页数:14
相关论文
共 10 条
[1]  
[Anonymous], 1998, HDB CODING THEORY
[2]  
CHEON EJ, IN PRESS DES CODES C
[3]  
CHEON EJ, IN PRESS DISCRETE MA
[4]   A CHARACTERIZATION OF SOME [N, K, D Q]-CODES MEETING THE GRIESMER BOUND USING A MINIHYPER IN A FINITE PROJECTIVE GEOMETRY [J].
HAMADA, N .
DISCRETE MATHEMATICS, 1993, 116 (1-3) :229-268
[5]  
HILL R, 1992, CRYPTOGRAPHY CODING, V2, P75
[6]  
Hirschfeld J. W. P., 1998, PROJECTIVE GEOMETRIE
[7]  
LANDGEV I, 1995, P INT WORKSH OPT COD, P108
[8]   On the minimum length of quaternary linear codes of dimension five [J].
Landjev, IN ;
Maruta, T .
DISCRETE MATHEMATICS, 1999, 202 (1-3) :145-161
[9]   The nonexistence of some quaternary linear codes of dimension 5 [J].
Maruta, T .
DISCRETE MATHEMATICS, 2001, 238 (1-3) :99-113
[10]   On the nonexistence of q-ary linear codes of dimension five [J].
Maruta, T .
DESIGNS CODES AND CRYPTOGRAPHY, 2001, 22 (02) :165-177