Einstein relation for reversible diffusions in a random environment

被引:22
作者
Gantert, Nina [1 ]
Mathieu, Pierre [4 ]
Piatnitski, Andrey [2 ,3 ]
机构
[1] Tech Univ Munich, Fak Math, D-85748 Garching, Germany
[2] Narvik Univ Coll, Narvik, Norway
[3] Russian Acad Sci, PN Lebedev Phys Inst, Moscow 119991, Russia
[4] Univ Aix Marseille 1, Ctr Math & Informat, F-13013 Marseille, France
关键词
MARKOV-PROCESSES; RANDOM-WALK; INVARIANCE-PRINCIPLE; MOTT LAW; HOMOGENIZATION; PARTICLE;
D O I
10.1002/cpa.20389
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider reversible diffusions in a random environment and prove the Einstein relation for this model. It says that the derivative at 0 of the effective velocity under an additional local drift equals the diffusivity of the model without drift. The Einstein relation is conjectured to hold for a variety of models but so far it has only been proved in particular cases. Our proof makes use of homogenization arguments, the Girsanov transform, and a refinement of the regeneration times introduced by Shen. (C) 2011 Wiley Periodicals, Inc.
引用
收藏
页码:187 / 228
页数:42
相关论文
共 28 条
[1]  
[Anonymous], 1968, ANN SCUOLA NORM-SCI
[2]  
[Anonymous], 1986, WILEY SERIES PROBABI
[3]  
[Anonymous], 1994, Grundlehren der Mathematischen Wissenschaften Fundamental Principles of Mathematical Sciences
[4]   The speed of biased random walk on percolation clusters [J].
Berger, N ;
Gantert, N ;
Peres, Y .
PROBABILITY THEORY AND RELATED FIELDS, 2003, 126 (02) :221-242
[5]   Perturbation of symmetric Markov processes [J].
Chen, Z.-Q. ;
Fitzsimmons, P. J. ;
Kuwae, K. ;
Zhang, T.-S. .
PROBABILITY THEORY AND RELATED FIELDS, 2008, 140 (1-2) :239-275
[6]   AN INVARIANCE-PRINCIPLE FOR REVERSIBLE MARKOV-PROCESSES - APPLICATIONS TO RANDOM MOTIONS IN RANDOM-ENVIRONMENTS [J].
DEMASI, A ;
FERRARI, PA ;
GOLDSTEIN, S ;
WICK, WD .
JOURNAL OF STATISTICAL PHYSICS, 1989, 55 (3-4) :787-855
[7]  
Einstein Albert., 1956, INVESTIGATION THEORY
[8]   Mott law as upper bound for a random walk in a random environment [J].
Faggionato, A. ;
Mathieu, P. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2008, 281 (01) :263-286
[9]   Mott law as lower bound for a random walk in a random environment [J].
Faggionato, A ;
Schulz-Baldes, H ;
Spehner, D .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 263 (01) :21-64
[10]  
FUKUSHIMA M., 2011, De Gruyter Stud. Math.