The strong Atiyah conjecture for right-angled Artin and Coxeter groups

被引:11
|
作者
Linnell, Peter [2 ]
Okun, Boris [1 ]
Schick, Thomas [3 ]
机构
[1] Univ Wisconsin, Dept Math Sci, Milwaukee, WI 53201 USA
[2] Virginia Tech, Dept Math, Blacksburg, VA 24061 USA
[3] Univ Gottingen, Inst Math, D-3400 Gottingen, Germany
关键词
Coxeter group; Atiyah conjecture; Artin group; Residually torsion-free nilpotent;
D O I
10.1007/s10711-011-9631-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the strong Atiyah conjecture for right-angled Artin groups and right-angled Coxeter groups. More generally, we prove it for groups which are certain finite extensions or elementary amenable extensions of such groups.
引用
收藏
页码:261 / 266
页数:6
相关论文
共 50 条
  • [1] The strong Atiyah conjecture for right-angled Artin and Coxeter groups
    Peter Linnell
    Boris Okun
    Thomas Schick
    Geometriae Dedicata, 2012, 158 : 261 - 266
  • [2] Right-angled Artin subgroups of right-angled Coxeter and Artin groups
    Dani, Pallavi
    Levcovitz, Ivan
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2024, 24 (02): : 755 - 802
  • [3] Right-angled Artin groups are commensurable with right-angled Coxeter groups
    Davis, MW
    Januszkiewicz, T
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2000, 153 (03) : 229 - 235
  • [4] Subgroup growth of right-angled Artin and Coxeter groups
    Baik, Hyungryul
    Petri, Bram
    Raimbault, Jean
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2020, 101 (02): : 556 - 588
  • [5] Aut-Invariant Word Norm on Right-Angled Artin and Right-Angled Coxeter Groups
    Marcinkowski, Michal
    MICHIGAN MATHEMATICAL JOURNAL, 2020, 69 (02) : 285 - 295
  • [6] Stable commutator length in right-angled Artin and Coxeter groups
    Chen, Lvzhou
    Heuer, Nicolaus
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2023, 107 (01): : 1 - 60
  • [7] Polyhedral products and commutator subgroups of right-angled Artin and Coxeter groups
    Panov, T. E.
    Veryovkin, Ya. A.
    SBORNIK MATHEMATICS, 2016, 207 (11) : 1582 - 1600
  • [8] Right-angled Artin subgroups of Artin groups
    Jankiewicz, Kasia
    Schreve, Kevin
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2022, 106 (02): : 818 - 854
  • [9] ON THE RECOGNITION OF RIGHT-ANGLED ARTIN GROUPS
    Bridson, Martin R.
    GLASGOW MATHEMATICAL JOURNAL, 2020, 62 (02) : 473 - 475
  • [10] Expanders and right-angled Artin groups
    Flores, Ramon
    Kahrobaei, Delaram
    Koberda, Thomas
    JOURNAL OF TOPOLOGY AND ANALYSIS, 2024, 16 (02) : 155 - 179