Molecular Regulation Mechanisms and Interactions Between Reactive Oxygen Species and Mitophagy

被引:100
作者
Fan, Pan [1 ]
Xie, Xing-Hui [1 ]
Chen, Chang-Hong [2 ]
Peng, Xin [1 ]
Zhang, Po [1 ]
Yang, Cheng [1 ]
Wang, Yun-Tao [1 ]
机构
[1] Southeast Univ, Med Sch, Zhongda Hosp, Dept Spine Ctr, 87 Dingjiaqiao, Nanjing 210009, Jiangsu, Peoples R China
[2] Jiangyin Hosp Tradit Chinese Med, Dept Orthopaed Surg, Wuxi, Jiangsu, Peoples R China
关键词
ROS; mitophagy; oxidative stress; mechanism; NF-KAPPA-B; MITOCHONDRIAL DYSFUNCTION; DAMAGED MITOCHONDRIA; AUTOPHAGIC CLEARANCE; OXIDATIVE STRESS; TARGET GENE; P38; MAPK; DEFECTIVE MITOCHONDRIA; DEPENDENT MITOPHAGY; MEDIATED MITOPHAGY;
D O I
10.1089/dna.2018.4348
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The generation of reactive oxygen species (ROS) in response to oxidative stress has important effects on cell development, normal function, and survival. It may cause oxidative damage to intracellular macromolecular substances and mitochondria through several signaling pathways. However, the damaged mitochondria promote further ROS generation, creating a vicious cycle that can cause cellular injury. In addition, excessive ROS produced by damaged mitochondria can trigger mitophagy, a process that can scavenge impaired mitochondria and reduce ROS level to maintain stable mitochondrial function in cells. Therefore, mitophagy heaps maintain cellular homeostasis under oxidative stress. In this article, we review recent advances in cellular damage caused by excessive ROS, the mechanism of mitophagy, and the close relationship between ROS and mitophagy. This review provides a new perspective on therapeutic strategies for related diseases.
引用
收藏
页码:10 / 22
页数:13
相关论文
共 142 条
[1]   PKA Regulates PINK1 Stability and Parkin Recruitment to Damaged Mitochondria through Phosphorylation of MIC60 [J].
Akabane, Shiori ;
Uno, Midori ;
Tani, Naoki ;
Shimazaki, Shunta ;
Ebara, Natsumi ;
Kato, Hiroki ;
Kosako, Hidetaka ;
Oka, Toshihiko .
MOLECULAR CELL, 2016, 62 (03) :371-384
[2]   Phosphorylation of Serine 114 on Atg32 mediates mitophagy [J].
Aoki, Yoshimasa ;
Kanki, Tomotake ;
Hirota, Yuko ;
Kurihara, Yusuke ;
Saigusa, Tetsu ;
Uchiumi, Takeshi ;
Kang, Dongchon .
MOLECULAR BIOLOGY OF THE CELL, 2011, 22 (17) :3206-3217
[3]   The pathways of mitophagy for quality control and clearance of mitochondria [J].
Ashrafi, G. ;
Schwarz, T. L. .
CELL DEATH AND DIFFERENTIATION, 2013, 20 (01) :31-42
[4]   Localized accumulation of oxidative stress causes muscle atrophy through activation of an autophagic pathway [J].
Aucello, Michela ;
Dobrowolny, Gabriella ;
Musaro, Antonio .
AUTOPHAGY, 2009, 5 (04) :527-529
[5]   Parkin and mitophagy in cancer [J].
Bernardini, J. P. ;
Lazarou, M. ;
Dewson, G. .
ONCOGENE, 2017, 36 (10) :1315-1327
[6]   ROS, Hsp27, and IKKβ Mediate Dextran Sodium Sulfate (DSS) Activation of IκBa, NFκB, and IL-8 [J].
Bhattacharyya, Sumit ;
Dudeja, Pradeep K. ;
Tobacman, Joanne K. .
INFLAMMATORY BOWEL DISEASES, 2009, 15 (05) :673-683
[7]   ADENOVIRUS-E1B 19-KDA AND BCL-2 PROTEINS INTERACT WITH A COMMON SET OF CELLULAR PROTEINS [J].
BOYD, JM ;
MALSTROM, S ;
SUBRAMANIAN, T ;
VENKATESH, LK ;
SCHAEPER, U ;
ELANGOVAN, B ;
DSAEIPPER, C ;
CHINNADURAI, G .
CELL, 1994, 79 (02) :341-351
[8]   Molecular Interplay between Mammalian Target of Rapamycin (mTOR), Amyloid-β, and Tau EFFECTS ON COGNITIVE IMPAIRMENTS [J].
Caccamo, Antonella ;
Majumder, Smita ;
Richardson, Arlan ;
Strong, Randy ;
Oddo, Salvatore .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2010, 285 (17) :13107-13120
[9]   β-amyloid inhibits integrated mitochondrial respiration and key enzyme activities [J].
Casley, CS ;
Canevari, L ;
Land, JM ;
Clark, JB ;
Sharpe, MA .
JOURNAL OF NEUROCHEMISTRY, 2002, 80 (01) :91-100
[10]   The role of mitochondrial DNA mutation on neurodegenerative diseases [J].
Cha, Moon-Yong ;
Kim, Dong Kyu ;
Mook-Jung, Inhee .
EXPERIMENTAL AND MOLECULAR MEDICINE, 2015, 47 :e150-e150