On the incompressible limit for the Navier-Stokes-Fourier system in domains with wavy bottoms

被引:19
作者
Feireisl, Eduard [1 ]
Novotny, Antonin [2 ]
Petzeltova, Hana [1 ]
机构
[1] Inst Math AS CR, Prague 11567 1, Czech Republic
[2] Univ Sud Toulon & Var, F-83957 La Garde, France
关键词
low Mach number; Oberbeck - Boussinesq system; Navier - Stokes - Fourier system;
D O I
10.1142/S0218202508002681
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the Oberbeck - Boussinesq approximation is identified as a singular limit of the full Navier - Stokes - Fourier system provided the Mach and Froude numbers tend to zero. The result holds for any ill-prepared initial data and without any restrictions imposed on the length of the time interval. In particular, it is shown that the velocity converges almost everywhere, the oscillations of the sound waves being effectively damped by the presence of a "wavy bottom" of the physical domain.
引用
收藏
页码:291 / 324
页数:34
相关论文
共 23 条
[1]   Connections between stability, convexity of internal energy, and the second law for compressible Newtonian fluids [J].
Bechtel, SE ;
Rooney, FJ ;
Forest, MG .
JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 2005, 72 (02) :299-300
[2]   Low Mach number limit of viscous polytropic flows: Formal asymptotics in the periodic case [J].
Bresch, D ;
Desjardins, B ;
Grenier, E ;
Lin, CK .
STUDIES IN APPLIED MATHEMATICS, 2002, 109 (02) :125-149
[3]   A new result on the Pompeiu problem [J].
Dalmasso, R .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 352 (06) :2723-2736
[4]   Low Mach number limit for viscous compressible flows [J].
Danchin, R .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2005, 39 (03) :459-475
[5]   Incompressible limit for solutions of the isentropic Navier-Stokes equations with Dirichlet boundary conditions [J].
Desjardins, B ;
Grenier, E ;
Lions, PL ;
Masmoudi, N .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1999, 78 (05) :461-471
[6]   ORDINARY DIFFERENTIAL-EQUATIONS, TRANSPORT-THEORY AND SOBOLEV SPACES [J].
DIPERNA, RJ ;
LIONS, PL .
INVENTIONES MATHEMATICAE, 1989, 98 (03) :511-547
[7]   On a simple model of reacting compressible flows arising in astrophysics [J].
Feireisl, E ;
Novotny, A .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2005, 135 :1169-1194
[8]  
FEIREISL E., 2003, DYNAMICS VISCOUS COM
[9]  
FEIREISL E, 2007, IN PRESS J MATH FLUI
[10]   Mathematical theory of compressible, viscous, and heat conducting fluids [J].
Feireisl, Eduard .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2007, 53 (3-4) :461-490